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SUMMARY

A study of the feasibility of using self-actuating bleed valves as a

shock stabilization system in the inlet of the YI,'-IZ airp]anc, has been

made. The candidate stability valve types included vortex valves, slide

valves, and poppet valves, Performance of the valves ;.nstalled in the

inlet cowl and in the inlet shock trap bleed plenum was predicted using

analytical methods. In addition, the high temperature friction character-

i stics of linear bearings similar to those considered for use in the slide

valve were measured in the laboratory. Results of the analytical investi-

gation showed adequate steady state flow capacity for only the slide and

poppet type valves located in the inlet cowlo Dynamic analyses showed

that response of the poppet valve was substantially faster than that of

the slide valve. The test data indicated that further development _r-k

wo!ald be necessary before a satisfactory linear bearing for the sllde

valve could be obtained. For these _'easons poppet type valves installed

in the inlet cowl have been selected as the best shock stab" " .
for the Y F-12 inlet.

INTRODUCTION

An inlet shock stability system has---been proposed for flight demon-

stration on the YF-1Z airplane. The project will be a part of the con-

tinning NASA research program on the inlet of this aircraft. An initial

feasi______bility evaluation is to be followed by wind tunnel proof testing on a

full scale inlet. Upon successful demonstration of the system in the wind
tunnel, one inlet of the YF-12 aircraft will be modified to demonstrate the

stability system in flight.

The stability system will consist of self-actuating bleed valves

located in the inlet nacelle. The valves will open in response to the

increase in duct pressure produced by a transient excursion of the inlet

terminal shock forward from its steady state position. As the valves open,

inlet bleed air will be diverted overboard, thereby increasing the stability

range of the inlet. The valves will close when the transient disturbance

subsides and the shock retreats to its steady state position.

To determine the feasibility of such a system, an analytical evalu-

ation of several inlet shock stability valves has been made. The candi-

date valve types included vortex valves, mechanical slide valves, and

mechanical poppet valves. Installation locations in the inlet cowl and in

the inlet shock trap bleed plenum were considered. An enlarged shc_ck

trap bJeed entrance w_s considered in addition to the present configuration°
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Installation si:udies deterl_fined the nun_bcr and size of each type

{}f valve which can be installed at- each {}f the locations. Maxi_]_ut]_

steady staie flow rates through each coll_bination were cstinmt{,d. Ana-

lytical dynar_dc models of the n_ost pronfising configurations were. then

constructed and the dynamic response determined.

Friction data were obtained fron_ an overl_oard bypass door assembly

having linear bearings similar to those which would be used on the slide

valve. Data were obtained with transverse loads ran_ing from 0 to

2240 newtons and at temperatures from Z94 to 664 degrees kelvin.

STABILITY VALVE CONFIGUKATIONS

Principle of Operation

The YF-IZ airplane has a translating centerbody, axisymmetric,

mixed compression inlet as shown schematically in Figure i. Cowl

bleed removed from a shock trap bleed at the inlet throat is exhausted

overboard through the secondary passage of the engine nozzle. Bleed

_rom the porous centerbod'f is exhausted overboard through the center-

body suppor_ struts. A=__ariable overboard bypass is located aft of the

inlet throat as indicated in Figure i.

Two locations have been proposed for the installation of shock

stability valves. One is in the cowl bleed plenum and the other is just

forward of the inlet throat as shown in Figure I. In either case, the

self-actuating valves sense an inlet flow instability as a rapid increase

in pressure. The increase in pressure causes the valves to divert inlet

air overboard, thus preventing the instab[!ity from unstarting the inlet.

Vortex valves and self-acting mechanical va]ves have been investi-

gated for Lhis application. The operational features of vortex valves

designed for use in supersonic in]_zts are discussed in Reference i.

Two types of self-acting mechanical valves have als,_ been considered: __

slide va]ve and a poppet type valve. The method of operation of these

valves is discussed below.

1. Slide Valve with No Overboard Bleed - A schematic dia_zran_

of a piston actuated slide valve is shown in Figure 2(a). Two bleed

plenum arrangements have been considered. Ol,e has three plenun_s,

denoted BI, B2 and B% in Fit;ure Z(a), with the pressure in B °, actinv.

as the driving force on .he piston, The other has four plc,nu,l_s, BI,

B2, B3 anti B4 as showr in Figure 2(a), with the.' pres._ure in pl_-nu11_

B4 acLing on the piston. The eonfi/uration studied iniLially had three

compartments. Analysis :_howcd th._Y lhe decr • " ' , " P,%

due to flow throu:_,h the valw, prod_Qcd.-.a_-- __

travel. Conseq_l(.nt]y, th,' final conrigu_'alion. _,_pI¢_ys fmlr pJ,,n_,_,>.
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To operate l he valve without ()vcrboard blec(l, ()rifice iNo. 1 is n()l

used. The valve is held in the closed position by a spring ]()cate(l behind

the piston. If the pressure in the aft })feed plemln_ increas_'s rapi_lly,

the resulting pressure d_fferential across the piston forces file.,piston I_o

open. As the piston n_oves, it covers orifice No. 2 leaving plenu_s G

_nd H sealed except for leakage around the piston. The valve vdll remain

open until the pressure _n the aft bleed plenun_ decreases or until the

pressure in plenums G and I-I rises sufficiently due to piston leakage to

allow the spring to force the valve shut. rf the valve is open when the

bleed plenum pressure returns to its original value, the piston will begin

to close. When this happens, the pressure in plenun_ G will decrease

closing the dan_per valve between plenums G and H. Now the valve closing

_--7-=_- ..... - . ..... er valve and the valve closes slowly as air

--__num H into plenum G through orifice No. 3. The closing

rate can be adjusted by changlng the size of orifice No. 3. When the

valve reaches its full closed position, orifice No. 2 is exposed allowing

the plenum pressures to equalize again. The valve will not respond

properly to another rapid pressure rise until these pressures are equalized.

2. Slide Valve With Overboard Bleed - When an overboard orifice

(orifice _No. l) is adder1 to the corffiguration described above and shown in

Figure 2(a), the valve operation exhibits the following differences. Orifice

No. 2 is sized so that when the valve is closed, the pressure in plenum G

is approximately 0. l-N/era 2 less than the bleed plenum pressure acting on

the piston. The valve is held shut by a spring. When the bleed pressure

rises rapidly, the piston n_oves and covers o_._-k.c__._Z.---_Ls.tom_le.aka._e__ ..............

increases as a result of the bleed pressure increase. However, orifice

-No. 1 can be sized to provide an overboard flow rate equal to th,.,flow

rate into plenum G when the aft bleed plenum pressure rises just sufficiellt]y

to produce full valve opening. Fox" bleed pressure changes equal to or

greater than '._xT-_amount, the valve will remain fully open until the bleed

pressure decreases. Pressure changes less than this which produce only

partial opening may be followed by valve drift toward the open position as

the pressure in plenums G and H decays.

The original configuration userl a dal_per (orifice No. 3) to reduce

the magnitude of oscillations incurred during valve closure. Subsequently,

the valve friction was found to be higher than ori_inally assu_ed and the

additional damping force made the danlper unne.cessavy. The pLston-

operated valve with overboard bleer] was :selected as th(' final confi,eura-

i:_on for the slide valve.

3 ......... Valve With Bellows - A seh_,nlafic (]ia_,ra_7_ o[" a br]lows-

operated slide valve is shown in Figure 2(b). The forward face, of the
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actuating pT,,iton is expos¢_d to the blec<l plcnul_l prt,,_surc in the all c,J_-

partnmnt. The r_:ar face is exposed to air,blent pressure outside the'

nacelle on the outside of the bellows and engine face static pl'essure on

the inside of the bellows. Becailse lhe supply lines to the rear of the

piston are large relative to the leaf<aide area around the piston, the

operation of this valve is essentially independent of piston lea]cage. The

ratio of the bellows and piston areas is set to nlatch the pressure levels

of the three pressures acting on [he piston. The damper valve and

orifice serve the san_e functio_ the valve shown in Figure 2(a)

and, with adequate friction levels, may be om{I.ted.

This valve will ren_ain open as long as the pressure increase in

the aft bleed plenun_ persists. Upon termination of the bleed pressure

transient, the valve is ready to respond to the next one. One of the

major disadvantages of this configuration is its reliance upon accurately

known and consistently available reference pressu.r_e_

4. Pgppet Valve With No OverBoard Bleed - A piston actuated

poppet valve is shown in schematic form in Figure 3(a). To operate

the valve without overboard bleed, orifice No. 1 would not be used.

Orifice No. 4 is required in order to allow some leakage from the ple-

num B into plenum G. Otherwise, during a prolonged pressure step in

_-p!enuzn_/__t/L¢_ air in plenum G would lea]< out around the piston and the

valve night get "stuck" open. The operation of this valve is the same

as that of the slide valve with no overboard bleed. The same two limita-

tions apply: the valve will drift closed during a long duration bleed

pressure step, and_ not respond properly to a succeeding transient

until the pressures in plenums B, G and H have equalized. The original .............

configuration used the orifice da_:_per No. 3 to provide damping during

valve closure. Subsequently, an adjustable mechanical friction damper

on the poppet stern replaced the orifice damper.

5. _e_t Valve •With Overboard Bleed - The addition of orifice

No. 1 (Figure 3(a)) produces a system which operates in the sa_ <,

manner as the slide valve with overboard bleed. This valve, with the

stem-mounted mechanical friction damper, was selected as the final

configuration for the unshie!ded poppet valve.

6. P g_pet Valve With Bel.lows - A schematic dia_ran_ of a bellows-

operated poppet valve is shown in Figure 3(b). The principle of operaI_ion,

the advantages and disadvantatles a_'e the sa_e as for the bellows-

operated slide valve. Since a cowl installation requires valves aI two

axial positions, it is necessary to use different size bell,J\v,_ for the

correspondin_ valves to accommodate the differences in bl(,erl 1)lentln_

pressure.
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7. _et Valve With Ovcrl__29H'{ j Bleed and lrl_)w Shicl,I - A

modific(l version of the poppet valve for use in a c_wl installation is

shown in Figure 4. A poppet flow shield is used here to allow the

poppet to be driven directly by <tuct pressur,., rather than I-he bleed ple-

num pressure. There are two advantages achieved by the shield: (I)

aerodynamic forces due to airflow are n_inimized, and (Z) the driving

pressure does not decrease drar_tically due to opening of the valve.

Furthermore, it becomes possible to actuate the forward row of valves

with air ducted forward from a pickup location •further aft in the duct.

This permits faster actuation of the forward valves when the duct pres-

sure starts to increase just forward of the throat as the shock nmves

forward.

Since this valve concept appeared to be the best of those investi-

gated, more design refinements were made to the design than to the

ones shown in Figures 2 and 3. For example, Figure 4 shows an

additional orifice (No. 4) which was added to the poppet stem. This

orifice prevents the pressure above the poppet from bleeding down too

far when a small increase in duct pressure moves the piston across

o_'ifice No. Z. This ensures tha coralaLe.te_v.alve closure is always ob-

tained when the inlet transient disturbance subsides. ....

Assembly and Installation Layouts

As part of the shock stability system feasibility study, assembly

and installation layout drawings have been prepared. These drawings

show the alternate configurations and installation locations which have

been investigated. Because of the large number of drawings

in this report, they have been segregated from the fiaures,

-given drawing-numh_r_s__r_ather than figure numbers, and placed at the

end of the--report: following the figures. Dimerf_i6ns ai"_ given _n cen"ti-

meters. Since existing detail and asse-7_5!_ drawings of the inlet are

dimensioned in inches, some of the important centimeter dimensions in

this report are followed, in parentheses, by inches. All design work

was done using the inch as the unit of measurement.

J

i'

i

i. System Schematics - Drawings I, 2 and 3 are systenl sche-

matics of the recommended installations for the slide valves, unshielded

poppet valves, and shielded poppet valves, respectively. The valves are

located in the cowl just forward of the inlet shock trap. Both the inlets

to and the exits from the poppet and slide va]ves are compartn_ented

axially and circunfferentia]ly. All valves exhaust overboard throu.ah

louver e.,dts. F_ach of the slide va]ves is connected lo a ]ar._e common

plenum as indicated in Drawin_ 1. Each of th,.' forward poppet valves
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is connected to a common plenun_ and each ¢_f the aft poppet valw.s is

connected to another common plen_m_ as shown in Drawings Z and 3.

In each of these plenums, there is an adjustable overboard c_rifice.

The slide or poppet valves can be closed manually by actuatln_ a solenc_id

valve which admits high pressure air into the valve plenun_s. The high

pressure air is--obtained from ram scoops located in tho. inlet duct just

downstream of the throat. Installation layouts for full-scale and three-

quarter scale vortex valves are shown in Drawings 4 and 5, respectively.

2. Slide Valves

a. Drawing 6 shows a preliminary slide valve assembly and

its installation in the cowl.

b. Drawing 7 shows the installation of twenty-four slide valves

in the shock trap plenum. To facilitate flow around the valve end, the

shock trap exit duct was shortened slightly, adjacent to the duct wall.

c. Drawing 8 shows the installation of the slide valve in

the cowl. Changes or additions to Drawing 6 are:

• Number of valves increased from 24 to 25.

• A proposed typical louver box over each valve.

• Duct wall perforation details.

3. Poppet Valves - In the initial concept of the poppet valve, bleed

-- flow pressure losses in valve entry ports brought about a substantial

degradation in valve performance. The design was revised to allow bleed

plenum flow directly into the poppet area. Two designs resulted. The

first used restrictor check valves for damping and the second used light

friction devices.

Drawing 9 i_'che original version and Drawing 10 is the final

version of the unshielded poppet valve. The shielded version is shown

in Drawing 11. Drawing 12 is the original version and Drawing- 13 is the

final version of a bellows-operated poppet valve.

Drawings 14, 15 and 16 chow installations of the poppet valves in_

the cow!_--trap bleed plenum. The original installation of the

valves at these two locations is shown in Figure 14. Space requirements
dictated a reduction in size of the forward valves. Since a "eduction in

flow capacity was undesirable, subsequent work was directed to increasing

the size of the forward valves. The f_nal cowl installalffon for the popl_et

valves, Drawings 15 and 16, uses valv.xs of the sar_m hei;zht a! b_)_h the

forward and aft positions.

J
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Drawing l!_ shows the 1)]a,::eillent of the Iwenty-fivt' valves ar_mnd

the nacelle. The outl)(Jard chine showJ_ here would be preserH on I:he

airplane installation, but: nol, on the w_nd tunnel n_odelo Drawinr 15

also shows !:be d_t--_aa:alion rite, tails and the l)lul_bing which con-

nects each valve with its reference pr,,ssure plenum. Details of the

exit louver box are shown in Drawing 16.

4. Wind Tunnel Valve Actuator Drawing 17 shows the proposed

arrangement of an electrically operated bleed valve system for use in a

wind tunnel tes':. This system could be used to remotely vary the over-

board bleed flow rate in order to determine how nmch steady state bleed

l!lo\v is required to prevent adverse recirculation effects through the porous

c owl wall.

5. Variable Overboard Orifice - Drawing 18 shows the proposed

design for the variable overboard orifice required at each valve plenum,
and its installation in the sMn of th_ nacelle.

6. Bleed Shut-Off System Drawing 19 shows the pneumatic sys-

tem required to hold the bleed valves closed on command from the cock-

pit or from outside the wind tunnel.

7. Centerb0_d Y Perforations Drawing Z0 shows the perforated

centerbody skins. Tb.ey are replaG, eable by a set of solid skins to re-

turn to the original bleed configuration.

PERFORMANCE ANALYSIS

Design Pressures

1. Internal Pressures - The valve designs are based on internal

cowl pressure distributions obtMned from NASA/Lewis full-scale w_nd

tunnel tests of the YF-12 inlet. The data used are shown in Figures 5

through 8.

Flight test data were used to define conditions in the shock

trap bleed since these properties depend upon the engine ejector character-

istics and nacelle leakage. For flight at the design Mach nun_ber, it was

determined that the total pressure recovery of the shock trap bleed is

0.27 and the bleed mass flow ratio is 0.08.

i ....
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Z. I!]xfiernal ]'ressure._ - Since the blee,l valve flow will be dis-

charged overl_oard through l_mw, rs, it is nncossary to k,_ow l.h_ ,_x{_,rnal

pressure on the nacelle to size tl_ val.vt, exit louver:_ pr,_Imrl.y° ])ata

:fronl a recent NASA/An_cs wind tunnel test of a l/l Z-scale airplane rnod,_l

define these pressures. The results are shown in FiRuref_ <) through ZO.

Figure 9 identifies the circumferential orj.ent:al:ion of the synibols al)pc, arinl-

iri F'iguees 10 through 20. Frolll these curves, it is seen l:hat th<2 lower

inboard side of the nacelle iv the only region experiencing unusually large

positive pressures during high an_le of attack conditions.

Inlet Bleed Characteristics

1. Porous Bleed Recircul.ation - According to the dat:a of Figure 6,

there is a significant variation in the cowl static pressure ahead of the

inlet throat. If this region is perforated, with a plenum beneath the

perforations, a recirculation flow will ensue with flow entering the ple-

num where the duct pressure is l'_igT:, and .r_entering the duct in the forward

region where the pressure is low. An ar_lysis of the recirculation was

made assumir.g, as a first approxin,atiop, that the recirculation did not

affect the duct pressuze dist-r4-bu_r_ T}:e data of Reference 2 were used

to define the characteristics of flow from the duct into the plenum. The

results are summarized in Figures 21 and 22. The data of References 3

and 4 were used to estimate the flow from the plenum back into the duct.

The results were appr-oxirnate.d, by the correlation shown in Figure Z3.

Figures 21, 22 a-'rrd23 were used to determine the match point at which

the flows entering and leaving the plenum were equal. The match point

is shown in Figure Z4.

The analysis indicates a recirculation mass flow ratio of about

2 percent. A one-dimensional analysis of the blockage effect of the flow

emerging from the front of the porous bleed region indicates that this

quant-ity of flow will restrict the duct flow to the extent that the minimum

aerodynamic area will occur several inches upstream of the minimum

geometric area.

Although recirculation of this magnitude would undoubtedly alter

the duct wall static pressure distribution, it is apparent that a nonfJowing

bleed region of this length will have potentially adverse recirculation pro-

blends. Sindlarly, circumferential pressure variation, an oxanlple of

which is shown in N_gure 25, can induce re,circulation problems. Con-

sequently, it is recommended that cowl porous bloed re_ions forward of

the shock trap bo compartmented both axially and circumforentially.
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A cr_n_paris(_n (_F l_if_ure._ 6 nn(l 24 shows that l]_e c(_nlpui:ed

n_atch point.l)leed plenun_ pressure i.s close t() th,_ n_ean \,a]uc of the

external sta[:ic l)eessure on the porous re_ion. Col_s(.,quently, for

(leternfinatjon c_f plenuJll pressures for th(, ca:_es in which-fife ble(_d was

compartmelDted axia]ly, it was assu_e(i that the plenun_ pr(essure with

bleed valw.'s closed would be appr,._xit_ately equal to the n_ean duct pres-

sure exerted on the porous wall supplying air to the pl.enur_.

Z. Shock Trap Flow Characteristics - Steady state shock trap

match point flow rates and recoveries are available from both wind

tu__nnel and flight test data. However, no inlet data is available for the

case where the terminal shock is in an equilibrium position ahead of the

sl_ock trap. Consequently, the performance of the shock trap bleed under

these conditions has been estimated using wind tunnel data obtained during

a Lockheed test of various bleed con_figurations in a simulated inlet. Some

of the results are shown in Figures Z6 and Z7. Figure 26 shows a shock

trap bleed very similar to the present airplane bleed while Figure 27 is

for the same configuration with the streamwise opening enlarged by 55

percent. The curves show the-mass flow vs° recovery characteristics of

the bleeds for various terminal shock positions. Shock position is

measured by the wall static pressure level at a point upstream of the

bleed as indicated on Figures 26 and ZTo The--r-eference mass flow, WTOTA L,

is the calculated tunnel flow rate ahead of the bleed.

To match flight test data, it is necessary that the total pressure

recovery of the shock trap bleed be 0. Z7 and that the mass flow ratio

be 0.08. The data of Figure 26 indicate that for supercritical

inlet operation, these match points can be attained if we let

WTOTAL/W o = . 708. This method of matching the bleed test data with

flight test results has been used to define the operating characteristics of

the shock traps.

Steady State Valve Performance

i. Vortex Va]ves - Flow characteristics for a variety of vortex

valve installation designs with a wide range of operating conditions were

examined to determine optimum performance available with this l.ype of

valve. Data for the high capacity, compact-v_ _" " " in R .e_fe.r.e_rmei

were used for this analysis. This reference developed two sets of flow

characteristics for vortex valves: one based on test data from a set of

one-sixth scale va]ves, from which a "recommended design" was dew.'loped;

the other defined from actual, flow characteristics of a full-scale valve built

to the recommended design--referred to as the "full-scale test" dala.

These two da_a sets were selected as limiting perforn_ance curves for the

probable range of flow characteristics exhibited by vortex va]ves of this
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design, _l']lc "l'econnncnde_] {It,siXth _ perfor_l_anct_ carvt, sbo\vs ;, ,_ut'b

steeper t'adia] /h)w gain near the cul(Jff con<litton than the 'Full-scah,

re, st '1 curve, ind_caling g_'eatcr I)crfovl_lance I)otcnt:iai (]arlter bh',ed flo\v

increase with rise in blee(l pressure at Ol)tinml_ nozzl,, pre.;',4ure). The

nmre linear flow characteristics ,Jr the "fu]].-scale test" curve, howc, v,;r,

indicale gvcal:er slabilifiy when subjeclo_t to off-rlesign op_'ralintt c_nditions.

The nun_ber c_f vortex valves thal; can be used and their size is

limited by the space available for _nstali!at!on i-n=the..cowl-and, shock trap:::

areas of the nacelle, The n_axiiJmm practical valve size is 3/4-scale,

based on full-scale dimensions of _he "reconuncnded design". Since

valve outlet flow var{es as the orifice area, or as tl_e square of the scale

factor, flows for 3/._4_-scale valves are approximately 56 pc-cent of full-

scale valve flows under the same operati.ng conditions° A tJtal of 96 valves

with a total flow area of 310 cm Z can be installed in each area. The

valves in _he cowl area can be separated inf:o two sets of 48, denoted

the forward and aft cowl valves. Each set reacts indepen_lently to dif-

ferent local bleed pressures.

The_'_ortex"valve installation design assumes thai: valve outlet flow

dum41s_ir_ exhaust plenum which exiLY to a_nbient _hrough a set of

louvers. A nominai louver exit area of 6.45 cm 2 per valve i.s--=_._f4_-ocL.

The louvers back pressure the valvGs slightly as bleed l!low J_%r_ases,f':"

but changes in valve outlet pressure are accounted for in the flow

characteristic curves.

Flow analyses for an installed vortex valve were performed to

determine the effects of variations in valve design and in operating

pressures. Performance of the valve is defined as the increment in bleed

(radial) flow for a given increase in bleed pressure at a constant vortex

nozzle supply pressure. Bleed leakage flow is defined as the bleed flow

at normal operating bleed pressure. Leakage flow can be zero if the

valve is operating at tIT_-cartoff condition. Optimized performance for a

valve occurs at the nozzle supply pressure fr,r which bleed _low incre-

ment vs. bleed pressure rise is maximized while leakage flow is

acceptable,

7k simple computer program was written to analyze valve perforn_ance

while varying design and operatint; parameters over a wide range. The

parameters varied include louver exit area, valve scale, valve design, and

nozzle supply pressure. The valve configurations are indicated by three

designators: the scale (relative to the full-scale valve described in

Reference l), louver exit area (c_n2), and valve d(,s_n. The "I{D" design

refers to the' "recommended dosign" and Ihe "FST" de,_ign rcfc.rs I:o the

"full-scale test" valve. Valve performance and leakage flows were calcu-

lated for increases in bl.ecd pressure up to qO pe.r('c,.nl al;ove normal.
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The flight condilion a,_suilled was Math 3-I- at cruJs,._ altitudo. NorJ_al

operating bleed pressures of 2. 38, g. 9:_ and _. 77 N/cl_l z were a:_sullmd

to cover the probable pres:sure range in the forward nacelle areas.

l".esults of varying louver exit area are shown in Nigures Z8 and 19.

A 3/4-scale valve with "full-scale test" flow characteristic:_ is assumed.

Figure 28 presents the bleed flow incren_ent for a 20 pc:rcont increase in

bleed pressure for three exit areas. Figure Z9 shows leakage flow at the

three typical bleed pressures. All flows inclease with _,reater exit area

because of reduced back pressure ae (he valve outlets. Figure 28 shows

that optimum valve performance occurs at a definite nozzle supply pres-

sure for each design or operating condition, and performance is fairly

sensitive to nozzle pressure vartafton_m!_aa.r this peak. Leakage flows

shown in Figure 29 decrease sharply as. nozzle pressure increases until

the cutoff poin_ is reached, These a-re typical operal:[ng characteristics

for vortex valves.

Figure 28 also shows that optimum nozzle supply pressure increases

slimily for larger exit area° Theref®re, if highe'____.ozzle pressures are

available, greater flow increments can be obtai_sing exit

area. Leakage Glows would not increase significantly because the effect

of higher nozzle pressure almost balances the effect of greater exit area.

Because of space limitations and design consideraLions, a louver exit area

of 6.45 clan2 per valve was selected as a basic design for further para-

metric comparisons.

Figures 30 and 31 show differences in performgnce and leakag_

-------'tlretwo flow characteristic curves. The "recommended design" valve

almost doubles the peak bleed flow increments indicated for the "full-

scale test" valve, although peaks for bo[h valves occur at the same nozzle

supply pressures. Leakage flows are significantly lower for the "recom-

mended design" valve near optimum nozzle pressures. The stee_

the flow curves indicates much greater sensitivity to nozzle-p-r-es_t:

variations for the "recommended design 't valve.

Figure 32 presents a summary of optimized performance and leakage

for the different valve configurations examined. The data arc presented

for the range of normal operating bleed pressure, and assume that nozzle

supply pressure is adjusted to yield peak bleed flow increment. Figure 33

shows the same comparison on a percentage basis, using the 3/4-scaIe

"full-scale test" valve design with 6.45 cm 2 louver area as a base. The

"recommended design" flow characteristics indicate by far the highest per-

formance and lowest leakage flows. Increasing valve scale from 3/4 to

7/8 (a 35 percent area increase) yields the expected scaled up increases

in bleed increment and leakage flows. Increasing louver area yields a

small increase in performance with little change in leal<a_ae flow, as ex-

plai ned above.

11
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The c,fft, cts of off-design ()peration are shown in I,i.gur(,s 31 and 3_.

For a l0 percent inc:,'t,a.4e in nozzle supply pressure above th_ optimized

value, bl_t,d flow increment drops by approximately 30 percent for all

valve ccmfizurations. For a l0 percent decrease in nozzle pre_sure, per-

formance drops about 10 percent for "full-scale test" va]ves and nearly

four ttnles that af_lount for "recomnmnded design" valves. The percent

changes in leakage flow (Figure 35) show approximately double the sensi-

tivity to nozzle pressure varlation for valves with "recommended design"

flow characteristics. These figures emphasize the importance of con-

sidering the effects of off-design operation when choosing between vortex

valves and other type valves, or even between vortex valves with different

flow characteristics. Under conditions where nozzle supply pressure may

not be well defined and consistent, a large tolerance must be placed on

the design perfomnance of vortex valves of this type.

Figure 36 presents the installed performance and total flows for

"recommended design" valves operating at optirnum ncrz_z-l_ supply pre_na-r-c_.

Flow incren_ent with i , , " bleed pressure up to 50 percent is shown

as a percentage of inlet capture alrflow for the three separate valve instal-
lations. Valves are 3/4-scale and louver area is 6.4_ cm 2. The maxi-

mum total bleed flow increment for each set of 96 vaIves_.__operating in the

cowl and. in the shock trap areas is less than Z percent_f total airflow

for a local bleed press,__re ris_ of 50 percent. The total leakage mass

flow ratio is approximately .002 at either locatiom The drag

penalty charged to the leakage flow was computed by

assuming full ram drag, i.e., the drag coefficient based on inlet capture

area is twice the bleed mass flow ratio based on inlet capture area° At

both the cowl and shock trap plenum locations, the leakage drag coefficient,

based on wing reference area, is less than .00005.

Z. Slide Valves - The bleed flow rate through slide valves installed

in the cowl is a function of duct Math number (i.e., shock position) and

valve position. The relation between shock position and duct Mach number

is shown in Figure 37. The supersonic Mach numbers were computed

from the data of Figure 6. Mach numbers behind the terminal shock were

computed by normal shock theory. A linear variation in Mach number

was taken between the value at the normal shock and an assumed value of

0.95 just ahead of the throat. The mean duct Math number at each of the

separate bleed compartments (tabulated in Figure 37) was used in flow rate

computations°

The slide valve e_,dt lou,_er flow characteristics, based on test

data, are defined in Figure 38. Steady state flow characteristics of the

slide valve are shown in Figurc, s 39, 40 and 4! as a function of bleed

plenum pre._sure for the noted values of total pressure at the louver exit°

The louver flow rate:_ shown in Figure 38 were matched with those in

12
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Figures 139 through 41 to giv,: th- perforlllance of the val,,c/louver con3-

binal_ion. At- higher bleed plenm_, pressures, the flow was assul_led

cheat the louver exit when the valve was completely open c._r choked

in the valve slots when the valve was partially open. The minimun_ area
Z

in each fully open valve slot and in each exit louver slot is 89.6 cm ,

Flow rates throu,Th the valve/louver" combination are plotted in Figures ,42

and 43. Also shown on Figures 42 and 43 are flow rates through the duct

wall perforations. The data of Reference 2 were used to define the flow

characteristics from.the inlet duct into the bleed plenums. .....

Figures 42 and 43 may_also be used to find the steady state flow

through slide valves installed in the shock trap bleed plenums. In this

case, the bleed plenum pressure shown in Figures 4Z and 43 would be

the shock trap plenul-n pressure and the perforation flow rates would not

be pertinent.

It should be noted that the flow rates shown in Figures 38 through

43 are those through 24 valves, but through only one of the three rows

of slots. To determine the total flow rate through 24 valves installed in

the shock trap plenum, the mass flow ratio shown in Figures 4Z and 43

would be tripled. To determine the flow rate through=- s_alyes installed

in the cowl, Figures 4Z and 43 would be entered three times with the valve

position (identical for all three) and the duct Maeh number (different for all

three--obtain from Figure 37). The summation of these three mass flow

ratios is the flow through all three slots of 24 valves• Since the number

__ of valves installed in the cowl is Z5, the summation should be multiplied

by Z5/24 to obtain the total flow through 25 valves.

Leakage flow rates with the valves completely closed were estimated

by assuming clearances of 0.008 cm and a leakage path 0.318 cm long by

58.4 cm wide for each valve. .An iteration procedure was used to match

the leakage flow with the available pressure differential across the closed

valve. The drag penalty charged to the leakage flow was computed by

assuming full ram drag. The total leakage mass flow ratio through all

the valves was less than .0003 for installation in either the cowl, shock

trap plenum, or the pJenum of an enlarged shock trap bleed. The cor-

responding drag coefficients, based on wing reference area, were less tl0an

• 000006.

3. Unshielded Pop_pet Valves - Steady state flow rates through the

unshielded poppet valves were computed using the methods described above

with appropriate values for the physical dimensions involved. The minimum

area in each fully open valve is 53.7 cm Z. The relationship between shock

position and duct Mach number at free stream Mach numbers of 3+ and

13
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2.47 is shown in Figures 44 and 45. Flow characteristics of the valves

and exit louvers arc shown in Figures 46 and 47. Match point flows for

a total louver area of 1858 cn_ Z are superimposed in Figures 48, 49 and

50 on flow rates through the duct wall perforations. Flow n_atchin_ deter-

minations sin_ilar to these were also made for other exit louver areas.

On the basis of these results, which are summarized in Figure 51, an

exit area of 1858 cm 2 was chosen as a n_/nimum design requiren_ent and

was used in subsequent flow rate computations.

Figures 48, 49 and 50 may also be used to find the flow rate through

poppet valves installed in the shock trap plenum. The bleed plenum pres-

sure shown in these figures would represent the shock trap plenum pressure

and the perforation flow rate curves would not be applicable for this case.

Note that the flow rates shown in Figures 46 through 51 are those

through 24 valves. The total flow through the 48 valves installed in the

shock trap plenum is twice that obtained from Figure 48 or 49. Flow

through the forward and aft poppet valves installed in the cowl is determined

from Figures 48 through 50. Since there are 25 valves at each of two

stations in the cowl, the values obtained from Figures 48 through 50 should

be multiplied by 25/24 to obtain the flow through Z5 valves.

Leakage flow through the poppet valves in the completely closed

position was computed by assuming choked flow through an average leakage

gap of 0.008 cm. Leakage drag was computed by assuming full ram drag.

For installation locations in the cowl, the existing shock trap plenum, or an

enlarged shock trap plenum, the leakage mass flow ratio for all the valves

was less than .0008 and the drag coefficient based on wing reference area

was less than .000018.

4. Shielded Pop_pet Valves - The relationships between valve position,

bleed plenum pressure and bleed flow rate are the same as those for the

unshielded poppet valves (shown in Figures 48 and 49). However, with the

valve fully open, the minimum flow area in the valve, 47 cm Z, is less than

that of the unshielded valve because of the blockage caused by the poppet

shield entry pipe. Flow rates at maximum valve opening may be obtained

from Figures 48 and 49 by u%ing a valve opeiZn_ Ax=Io987 cm, which cor-

responds to an area of 47 cn_ . Leakage flow rate and drag is the san_e

as that for the unshielded poppet valve.

Valve Dynamic Perforn_ance

I. Co niputer Simulation - Mathen_atical models of the slir]c valve

and poppet valve have been constructed in order to estimate the effects of

various rlesi_n paran_eters on the dyna_ic response characteristics of the

14



valves. The nmdels incorporate provisions for considering various valve
configurations. The digital computer sinmlation provides a time history
of the valve motio'_- resulting frond a prescribed tinm history of flow
properties in the inlet duct. The step integration is accomplished as
follows.

The rate of change of pressure in the piston chamber due to piston
travel, leakage around the piston, and flow through the various orifices
is con_puted from the following relationship for adiabatic flow:

mV d'_ + (kV_ w
dt out + km_tV)P- (kRm_-TTinW. ) = 0

• In

where: n_ = mass _hamh_rs above piston

• = mass flow rate into chambers above pistonWl n

W ou t = Ir_ass flow rate out of chambers above piston

V = tot a_l vo!ume of chambers above piston

P = piston chamber pressure

TTi n = total temperature of air flowing into chambers

above piston

Mass flow rates are based on the estimated piston leakage shown in Figure

52 and the orifice flow shown in Figure 53. The piston clearance para-

meter, h3/L, as defined in Figure 52, was assun_ed to be 19.6 x 10-8cm 2

for the slide valve and i.'O22 x 10-8cm 2 for the poppet valves.

Valve position is calculated as follows:

o, At 2
x = x + xAt + x

o 2

where: x

x
_o
x

W

= valve position at end of time interval, _t

= valve position at beginning of interval

= valve velocity at beginrting of interval

= va]ve acceleration at beginning of interval

The forces acting on the pistons of the poppet valves are somewhat

different for the shielded and unshielded versions. Using the nomenclature

defined in Figure 3(a) and letting P be the average pressure acting on

the entire lower surface of the pop_°_, the pressure force acting on the

unshielded poppet is

= (P - PG ) AFpressure pop pop

where A is the area of the poppet norn_al to its axis°
pop

This can
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be rewritten as

Fpressure = (PI%- PG)Apop- (PB- P )Apop po F

where (PB PG )A is ternrod the "piston" force and (PB- P )Apop pop

is termed the "aerodynamic" force°

pop

Using the nonlenclature defined in Figure 4 and letting Pedge be the
pressure on the bottom edge of the poppet, the pressure force achng on the

shielded poppet is

Fpressure = (PD- PG )Apop - (PD" Pedge )Aedge

where (PD-PG )A is termed the "piston" force and (PD-Pedge)Aedgepop

is termed the "aerodynamic" force.

Similarly, the pressure force acting on the slide valve is

F

pressure = (PB4- PG )Apiston - Faerodynamic

• • :::..

where the nomenclature is defined in Figure 2(a). The aerodynamic

force here is the axial force on the sliding gate°

The aerodynamic forces, as defined above, have been estimated

analytically for the various valve configurations ......The

slide valve and the unshielded poppet valve are shown in Figures 54 and

55. For the shielded poppet valve the edge pressure is estimated to be

0.60 times the bleed plenum pressure P . The aerodynamic force on the

shielded poppet valve, therefore, becomeBs

Faerodynamie = (PD-'60 PB )Aedg e

Z
where the edge area is 4. 19 cm .

For any stability valve c(_nfiguration, the acceleration of the pistc_,_:i_

may be con_puted as follows:

14
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where F
friction

F
sprin_

mpi ston

Fpiston- Faerodynami c - Ffriction- Fspring

rn .
plston

= friction force

= spri.n._ force
= p].stoi_ n)ass
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Two types of transient disturbances were sin_ulatcd on the cor_putcr

to investigate the dynamic response of the slide and poppet valv_So One

was an input perturbation in bleed plenu_ pressure aald the other was an

input perturbation in inlet ternKnal shock position. Figures 4Z, 43, 48, 49

and 50 show the steady-state relationship between duct Mach nmld)cr, valve

position, and bleed plenum pressure. It was assun_ed that the valve

response is slow compared to the flow response through the valves, so

these relationships can also be used as an approx_rmati.on for transient

disturbances. Duct Mach number is related to shock position as shown

in Figures 37, 4.4 and 45.

Bleed plenum pressure transients consisted of step and sinusoidal

variations. Shock position "transients were composed of a relatively slow

shock movement from the normal operating point up to the inlet throat

followed by a rapid movement from the throat to the leading edge of the

porous bleed region on the cowl. With no flow through the bleed valves,

it is estimated that the shock velocity relative to the duct will be about

97. 5 m/s by the time the shock reaches the leading edge of the bleed.

The shock moves from the throat to the bleed leading edge in about 6

milliseconds° An arbitrary value of 50 milliseconds was chosen for the

movement from the steady state position up to the throat. These two

components made up the shock position transient used in the computer

analysis. For the case of the poppet valves, the 6 millisecond portion

was further broken down ill,to4 milliseconds for the aft poppets and Z

milliseconds for the forward poppets.

Z. Slide Valves - The physical characteristics used in computing

the dynamic performance of the slide valve are tabulated on Drawing i.

Response of the slide valve to a 27 percent step in bleed plenum pressure

is shown in Figure 56. Complete opening requires .068 seconds. Shock

position transients are shown in Figures 57 and 58. Complete opening of

the valve takes longer for these cases because the driving pressure on the

piston builds up more slowly than for the case shown in Figure 56. By

the time the terminal shock has reached the leading edge of the bleed,

the valve is open about I/4 or I/2 cr:_, depending on the altitude. W-hen

the shock reaches this position, it is arbitrarily held in order to observe

complete valve opening. Then the shock movement is reversed in order

to observe valve closure.

Valve response to large amplitude 10 and 40 Hz oscillations in bleed

plenum pressure is shown in Figures 59 and ()0. The 10 Hz case shows

a large amplitude valve oscillation out of pha,'_e with the driv_n_ pre:_surt_

while the 40 Hz case shows nearly eon_plcte danlpin_ of tile oscillation.

The effect of adding the fourth conlpartment to the valve is shown in

Figure 61. A small shock displacenmnt op(,ns the foul" _on,parl. n_(.:nt valve

completely, but the decrease in bleed plenunl pressure as thr' valve opens

prevents complete openinu of the three co_partt_enl valve.

17
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Prelin_inary configurations of the slide valw, included one with no

overboard bleed and one with an orifice (la_llpcr valve as shown in

Figure Z(a). Due to piston ieaka_e, the valw., with no overboard bleed

will eventually drift closed during a long ',,ration transient such a.s a

large change in aircraft angle of attack. "The configurat-ion ,with tht_

damper valve showed satisfactory dyna,nic perfornmnce. The priz,,ary

effect of the damper was to increase the time required [or valve closure.

Both configurations were dropped from further consideration-the, forn_e_

because of poor angle of attack behavior and the latter because the damper

did not improve performance enough to warrant the added con_plexity and

cost.

3. Unshielded Poppet Valves--The original poppet valve configura-

tion had the orifice damper valve No. 3 shown in Figure 3(a). This

arrangement exhibited two deficiencies, examples of which are shown in

Figures 62 and 63. Figure 62 shows that during valve closure a high

frequency oscillation will occur as a result of the spring effect of the

small volume of air trapped above the poppet piston. Figure 63 illustrates

a condition in which the valve will not close completely when the transient

disturbance is removed, again because of the small volume of air trapped

above the piston.

_-&_Jalt_of thos_e deficiencies, the orifice damper was re-

moved and a friction device was added to the poppet stern as shown in

Drawing i0. Drawing Z shows the installation of the valve in the nacelle

and lists the physical characteristics of the valve. The performance of

this configuration is shown in Figures 64 through 76. FJ'gures 64 and 65

show that at freestream Mach numbers of 3+ and Z.47, the aft poppet valve ........

will open fully in about .028 seconds following a Z7 percent step change in

bleed pressure. Response of the aft poppet to large amplitude 10 and 40 I-Iz

oscillations in bleed plenum pressure is shown in Figures 66 and 67. As

in the case of the slide valve, the 40 igz response is considerably more

damped than that at 10 Hz. However, in the 10 Hz case, the response of

the poppet lags the driving pressure by only about 90 degrees whereas in

the case of the slide valve the motion lags by about 180 degrees.

Shock position transients are shown in Figures 68 throu,_h 73.

The performance of the aft and forward poppets at Mach 3+ is shown in

Figures 68 through 71. Although the forward and aft poppets are_de_t__cal

in design, the forward poppets are less responsive to mo,-cn_ents of th_-

tern_inat shock because they do not benefit from a pressure rise preceding

the terminal shock as in the case of the aft poppets (sec Fiuure 4.t).

Whereas the aft poppets have opened Z c) to 51 p_:rcent (dcpe,_din!z on altitude}

by the tinm the terminal shock has r,_,ached the leading ,,.cl_c, _,f the, porou,_
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bleed, the forward poppc_tshav_ c}nly openc,d aboul 1 pc,rcent. Th,:

usefulm;ss of the forward p_ppc_'t with this typc_, of transienl disturbance,

appears small unless the valve is exposed to a blc, ed prc, ssure build-

up considerably grea_er khan the .0()g seconds ass,tidied in t"igur_,s 70

and 71. However, the forward valves should respond about as wc;ll as

the aft valves in the case of aircraft angle of attack transie_

build up over a substantially longer period of time.

Response of the aft poppet to a displacement of the terminal shock

at freestream Mach number 2.47 is shown in Figures 7Z and 73. The

driving pressure disturbance in this case is substantially different than

that at Mach 3+ as is evident by comparing the duct Mach numbers

shown in Figures 44 and 45. At Mach 2.47, there is no increase in

bleed plenum pressure as the shock approaches the throat and the

change in duct Mach number as the shock passes over the bleed is

smaller than at Mach 3+. The result is that the valve receives a

small pressure impulse which is greatly diminished as the valve begins

to open. The reduced bleed plenum pressure is not sufficient to hold

the valve open as it did at Mach 3+ (see Figures 68 through 71).

Large amplitude 17 and 25 Hz oscillations result. Increased friction

forces were applied to the poppet in an attempt to dan_p the oscillation.

The effect is shown in Figure 74. An 8.9N increase in friction pro-

duces acceptabIe valve motion after 3 cycles of ringing. However, a

friction increase of this magnitude will produce undesirable effects at

higher altitudes where the valve driving fo{L-_'g are much ._maal:l._¢. -

Consequently, the use of friction to damp the oscillations shown in

Figures 7Z and 73 does not appear feasible.

Although Figures 7Z and 73 indicate an undesirable instability, they

represent a very unlikely physical situation in that the terminal shock is

forced to remain at the leading edge of the bleed while the valves oscil-

late. A more reasonable physical expectation is that the inlet will eith_ r

unstart completely or else restart. The latter possibility has been in-

vestigated, with the results shown in Figure 75. No instability is evident.

To further investigate valve damping, a weak bleed pressure step insuf-

ficient to produce complete opening was applied to the valve. The results,

shown in Figure 76, indicate no instability in this case either.

It therefore appears likely that the poppet valve w_]l be adequately

damped when step changes in blet;d plenum pressure are applic_'d, but will

be inadequately damped in some cases when step changes in tern_inal shock

position are app]ied. The shielded version of th_ poppel valve was desi._2ned

to eliminate this potential problem.
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4. Shielded POlK_et Valves - The si_ieldcd pOl_pet valw,, shown in

Drawing 11, has tile /ollowing chacacterisfics., Nonlenclature is defined

in Figure 4.

Mass of movin_ poppet

Spring preload

Spring rate

Pl__-i:; v_iu_'a_-Z(:p'e'rvalve)

Poppet friction, dynamic

Poppet friction, static

Area of orifice No. i (per valve)

Area of orifice No. Z

Area of orifice No. 3

Area of orifice No. 4

Location of orifice No• 4, & x

Min. area in exit louvers

(per valve)

•226 kg

N

N/ca
3

CIVIl

N

N

13. 35

7.01

2700•

4.9

9.8
2

• 01032 cm

• 0710 cm 2

• 0129 crn 2

• 0129 cm 2

1. 118 cm
2

74.2 cm

The response of this valve to several types of transient dis-

turbances is shown in Figures 77 through 85.

Figures 77 and 78 show response to step changes in PB and PD

(see Figure 4 for nomenclature). Due to flows into and out of the refer-

ence pressure plenum, the reference pressure PG may gradually change

after an inlet transient disturbance opens the valve and closes orifice No. Z.

The result is that over a period of time, the poppet may gradually drift

to one of three s_able positions: fully open, half open, or fully closed.
'i :"'_,._ _:-.:': T-I .:_ .....

An example is shown in Figure 79. A 20 percent!ilstep:in PIB and PD

produces nearly complete opening after 0.042 s_conds. At this position,

air is flowing into the piston chamber through orifice No. 4. At

t = 0.54 second_,__t}_e--'refereiace pressure has built up sufficiently to over-

.:_._.L--the_-static friction and the poppet begins to close• At t = 0. 59, the

:-motion stops because the driving forces are less than the static friction.

At the new poppet position, there is no flow through orifice No. 4 so the

reference pressure will begin to decrease. W-hen this pressure drops suf-

ficiently, the static friction will be overcome and the poppet will begin to

open• Since the lower tap on orifice No. 4 is located at Ax = I. l lScm,

the poppet will jump back and forth acros" this location over a longer

period of time. In the presence of vibration, the motion would bc less

jerky than thai: shown in Figure 79. The final equilibriun_ position where

motion would cease }s a poppet opening of about i. l_Scn, where _hc flow

rates into and out of the piston chan_b_r are equal.

'gO
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Figure 7 _) :dlows a lransient disturbance which produces partial

valw: opcnin_{ followed ;)y a drift back 1o lhe half-open position. Two

other types of long duration _:ffecls are possible. ];'ir,_;1 , a wc, a]<er dis-

turl)ance which produces an initial ol)enin _ less than half-open will be

followed 1)y a drift up lo the half-open position. Second, a stronlter

disturbance which produces complete opening will not be followed I)v

poppet drift since orifice No. 4 will be closed.

Figures 80 through 82 show valve response to the terminal shock

displacements indicated in the lower part of the figures. Where the

response of the unshielded poppet differed s;gnificantly, it is shown as

a dashed line. Use of the shield has eliminated the instability at

Mo=2.47.

Figures 83-and 84 demonstrate the sensitivity of the valve to

___pz_s.sure oscillations when a prior increase in duct pressure has pro-

duced partial valve opening. The oscil=l__duced by a +.03
variation in duct Mach number after a t_f'i__----_ve-ment toward

the throat has produced partial opening.

Response of the valve to single pressure pulses of varying duration

is shown in Figure 85. The valve position shown here is the maximum

displacement produced by the pulse. In all cases, the valve eventually.

closes since the pressure putse is not recurrent. Below about Z Hz

the valve shows no response at all because the..flaw, thraxtgh._the orifices

into the piston chamber is sufficient to keep the pressur_ differential

across the valve below the value required to unseat the poppet.

1

!
1

Aircraft a-_t%--P-ropulsion _ystem Flight Performance

1. Propulsion System - The inlet bypass door control modu]ates

the door posie, iro.v_-as required to maintain a scheduled value of the ratio

of PSD8 to PPLM where PSD8 is a manifolded duct wall static pressure

just downstream of the throat and PPLM is an external cowl pitot pres-
sure. Available wind tunrml data show that substantial reductions in back

pressure on the cowl shock trap bleed have rel.atively little effect on lhis

signal pressure ratio.

The greatest potential effect on signal pressure cmcurs when

bleed valves ar • , nmc,_r-rl--_h,_ad of the shock !rap.

Under these conditions when the ternfinal shock is jusl forward of the

porous bleed, substanIial quantitie._ of bleed air will be rc_novcd by the

valves in addition to the increased flow through the shock trap. If the

signal pressure ratio dror_s below the scheduled value, lhe l_vpass door

will be commanded to a closed position. Bypass closure could aegraval_:

the condition which was cauaing the shock lo !m forward.
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To exai_i.ne this possJ, l)ilily, a :-_ii_iplifiedone-dinlensiona], ana]ysis

of the duct flow was lilade assulld.nK t1lat a nor.rllal shock stood at the

leading edge of the porous bleed region. PSD8 was assurlied to be equal

to the theoretical static pressure at the cowl station location of the PSD8

ports. PPLM was obtained from wind tmmel dala, assun_inv that the

overboard bleed flow did not affect this pressure. With 20 percent over-

board bleed the computed signal pressure ratio PSD8/PPLM was 1.96

and with 10 percent bleed, it was 1.81. The comn_anded signal pres-

sure ratio is I. 56 at 6 degrees aircraft angle of attack and 1.45 at

4 degrees. The analysis, therefore, indicates that the bypass door will

be commanded to open when the terminal shock is forward and the bleed

valves are open, thereby aiding the shock reswallowing process.

Z. Aircraft - Figure 86 shows the estimated effect of a complete

and sustained opening of one nacelle's shock stability valves on aircraft

motion at cruise altitude and Mach number. When the valves are fully

open, a 30 percent loss of thrust occurs along with aerodynamic effects

due to bleed air flowing over the wing. The aerodynamic effects were

estimated from forward bypass door data. For the case shown, no pilot

inputs or autopilot inputs were used to correct the right roll which builds

u_'-to-80 degrees in six seconds. However, the stability augmentation

system (SAS) did command four degrees left roll control (maximum roll

authority for SAS) and sufficient yaw control to limit sideslip angle to a

maximum of I. 5 degrees. Due to uncertanties in estimating the effects

of-opening the shock stability valves, the aircraft response shown is

probably more-violent than an actual• case would be. Also, in the case

shown, the valves- arc assumed--_e--_-£om--tke._e._!:iv_ flm_. of the

response. If the valves were open for a shorter period of time, the

response would be less violent. The case shown here is considerably

less violent than an inlet unstart at the same flight condition and would

be controllable using pilot inputs which are well within the aircraft control

- capabilities.

SLIDE VALVE BEARING TEST

Appara_s and Procedure

In order to determine the friction characteristics and life span of

linear bearings representative of those proposed Por the slide valve, an

existing bypass door assembly was tesled in the laboratory. This door,

supplied by NASA Lewis Research Center, ran on a pair of Schneeberger

linear bearings. Each bearing consisted of a series of rollers, spaced

by roller separators and operating in a linear race. T,.sting was conducted

in the oven shown in Figure 87 at temperatures up 1o 664 degrees kelvin.

Transverse loading on the door was accomplished 1)y I_(.'ans of loading

ZZ



: r_̧ •

\
P

I
i

I
i

I)locks a:_ shown in l.'il/_lrc 88. r]']ll, rod exlendin!, through lhc, lefl side

of the oven wall in 7Figure 38 was allac.l_t:d Itl all c. xternal scale used to

record the I)earinH, friction fol'cl.. '.I'hc hydraulic sc, rvo insl;a]lcd oi_ ih,.'

opposite end of the door asseulbly was used to cycle _/_. All_teslin/4

was conducl:ed without lul)rication ,)r, the bcarinl_,s. _eJ,lcnts of static:

and dynamic friction were _llade at six positions a]onl/ lhe path ,,f door

travel. Transverse loads vanl/ed /ronl 0 to 22.40 newtons.

Friction Measurements

Initial tests at room temperature yielded friction coefficients sub-

stantially higher than expected. Investigation showed that, under load,

there was a slight binding or interference between the moving parts.

Consequently, the bearing shim thickness was increased in steps from

the original value of 0.023 cm up to a final value of 0.051 cm at which

point no further interference was apparent. Friction=mm_surements at

room temperature yielded the results shown in Figure 89. The friction

coefficient is the ratio of the friction force to the transverse load.

High temperature tests were then conducted with the oven filled

with carbon dioxide. Prior to heating I:he door was cycled briefly at

1 Hz by the hydraulic servo to verify that: the actuation ss__:a_

functioning properly. After a 4-i/2 hour soak period in the heated oven,

the door base had r-e_.-c_-eda temperature of 664K. Fri_0ri was !!:measured

with all the loading blocks installed. The data, shown in Figure 90,

indicate a substantial increase in friction from the levels nmasured at

roon% teznperature. With the _or temp.erature at 670K, an attempt to

initiate life cycling of the door resulted in a hydraulic failure inside the

oven and the test-was tern_inated.

Friction was measured again when the door had cooled to too:an

temperature. The data, shown in Figure 91, indicate friction levels

even higher than those measured at 664K. The friction remained high

when the door was unloaded and cleaned of hydraulic fluid condensate

residue. It was noted that the bearing racca __ed to a dark

blue0 Moreover, a ratcheting sound and feel was noted when the door

was actuated manually with a small transverse load. The bearings were

therefore disassembled for closer inspection. Figure 92 shows the door

assembly before disassembly. Warpag,_ in the roller separator is evide_it--__

Figure 93 shows the disassembled bearing. Although the roller separator

is severely distorted, no evidence of contact with the bearin_ race was

observed. A slight warpage in the bearing race was noted near the

center _f the race and the bearing rollers were scored as though they

had been sliding rather than rolling.
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S(-cady State F]ow CulJipa:l:ison

The csti_ated flow rates Ihrou,h the shock stabilily valves ]lave

been added to the calculated engine ,_jcctor secondary flow and super-

imposed on the shock trap flow characterislics in Figures 94 and ')_.

These two figures define the steady state perforn_ance of the three types

of stability valves in the bleed plenun_s of the present and the enlarged

shock traps. The steepness of the cu,'vc of ejector plus slide valve or

poppet valve flow in contrast to the nmch shallower slope of shock trap

flow indicates thai atten_pts to increase nacelle secondary flow area or

valve exit area are not worthwhile, because the potential increase in

bleed flow is very small.

The steady state flow rates through fully open stability valves are

summarized in Figure 96 for two conditions: bleed plenum pressures 27

percent higher than I:heir normal steady state values, and the inlet

terminal shock standing ahead of the bleed. Since inlet sta-bi-l}tyis

affected by changes in ejector secondary flow as well as stability valve

flow-, two flow rates are tabulated in Figuge 96. The first is the increase

in stability valve flow due to the increase in pressure. This is a mea.sure

of valve flow capacity. The second is the che-n%_, in the sum of valve flow

plus ejector secondary flow, which represents the increase in flow removed

from the inlet cowl at or ahead of the throat. This is a measure of the

inlet stability ...........

Figure 96 shows that the installation of vortex valves in either the

cowl or shock trap plenum provides the smallest flow capacity of the

configurations studied. Moreover, it also shows that the installation of

any type of stability valve in the plenums of either the present or enlarg, ed

shock trap will produce a net increase in shock trap mass flow ratio of

less than 5 percent. Therefore, from steady state flow capacity con-

siderations, the only feasible configurations appear to be slide valves or

poppet va]w'.s installed in the cowl just ahead of the inlet throat.

Dynamic Performance Comparison

The dynamic perfor_nance of those configurations acceptable in ler_s

of steady state flow capacity is shown in Figure 97. The first colu_n

shows the li.nle required for full valve opcnin_ following a 2.7 perccenl sIep

increase in duet and bleed plenun_ pressures. The next two colu_ns show

the change in cowl hleed flow (valve flow plus shock _rap bleed flow)

.056 seconds after a [ransienl displace_mnl of lhe teen,ins1 shock is

initiated. The shock displacen_enl consisls of a .0q0 :se<;()_lC] ll,OVC'ltle111

from the nor_al sleady slaf_, 1)o_iti. on _-p 1o lh,: lhr_)al follo\v_,d ,_y a

24
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. 006 second movement fron_ the throat to the ]eadintt edge of /he por.Jus

bleed. The last two columns show the natural frequency of the installed

valve with the inlet tcrn_inal shock position fixed.

The two versions of the poppet valve are superior to the slide valve

in two respects: faster t'esponsc time and highe" _atural frequency. Be-

cause of the isolation of _he poppets from the blc,:, plenum pressure, the

shielded poppet valves have a lower natural frequency than the unshielded

valves. However, the shielded poppets are superior in two important

respects. First, the forward poppets now sense duct pressure at the

same location as the aft poppets and hence respond faster to inlet shock

movements. This is one reason that the shielded valves show higher

flow rates after the .056 second shock position fransiento Second, the

valve ringing which occurred at Mach Z.47 was eliminated By addition of
the shield.

Bearing Test

Experience obtained with the linear bearings indicates that consider-

able care must be taken to avoid interference when large lateral leads

are--applied. Testing at high temperature resulted in scoring of the

bearing rollers, severe distortion of the roller separators, and a slight

warpage of the bearing--r_ces. It is believed that the rollers skidded

at high temperature, scoring the rollers and producing higher friction

coefficients. It could not b e-4retermined whether the skidding occurred

before or after the roller separators buckled.

CONCLUSIONS

A feasibility study of proposed self-actuating inlet shock stability

bleed valves for the YF-12 airplane has been made. The candidate valves

included vortex valves_ slide valves, and poppet valves. Installations in

the inlet cowl and in the inlet shock trap bleed ple_ue_--_ere considered.

Shielded and unshielded versions of the poppet valve were designed for

installation in the cowl. In the shielded valve, inlet duct pressure acts as

the driving force on the poppet while in the unshielded version the Meed

plenum pressure is the driving force. The following conclusions have

been reached:

1. The installation of any type of bleed valve in the plenum of the

present shock trap, or in a lengthoned shock trap, will produco a net

gain in shock trap mas._ fln.w_r_atLo_o£-d.e-s_ than 5 percent. The steady
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state shock trap rl_ass flow ratio wilh tile ternfinal shock standing ahead
of the inlet throat is abou| 17 percent, or less, dependin_ on the type of
bleed valve and size of the shock trap, coz_uJared to about 12 percent
without bleed valves.

2. The installation of vortex valves in the cowl yields steady state
valve mass flow ratios of about 3 percent with the terminal shock ahead
of the bleed.

3. For installations in the cowl, the steady state mass flow ratios

with the terminal shoc-_head of the bleed add the valves fully open are

about 22 percent for twenty-five slide valves, 26 percent for fifty un-

shielded poppet valves, and Z1 percent for fifty shielded poppet valves.

D
o

4. A 27 percent step increase in inlet duct and bleed plenum

pressures at cruise Mach number and altitude will open the cowl slide

valves in .068 seconds, the unshielded cowl poppet valves in .Q28 seconds,

ancl the shielded cowl poppet valves in .025 seconds.

5. At cruise Mach number and the minimum altitude, a .050 second

moven_ent of the terminal shock from its steady state position up to the

inlet throat followed by a .006 second movement from the throat to the

leading edge of the porous bleed will produce partial opening of valves

installed in the cowl_a-r-ease in cowl bleed mass flow ratio

(valves plus shock trap) du_ring, the .056 second transient is about .07

for the slide valves, . i'_ for bhe unshielded poppet valves, and .24 for

the shield e_l n_l_pet valves. At the maximum altitude, the corresponding

increases in cowl bleed mass flow ratios are .04, .08, and . 10 for the

slide, unshielded poppet, and shielded poppet valves, respectively.

6. A step change in in]et shock position at Mach 2.5 causes ringing

in the unshielded cowl poppet valve because of the dynamic interaction

between the poppet and the driving pressure in the bleed plenum. Similar

duc£ transients at the cruise Mach number do not produce this ringing.

The shielded poppet valve does not exhibit this instability at elther Mach
number.

7. Laboratory tests of linear bearings sho\ved--t+ra* excessive dis-

tortion of the roller separators and slidinl of the rollers can occur at

high temperature. Production of satisfactory slide valve bearings will

probably require additional bearing development work.

8. The bleed valves do not appea'_'to adw.'rsely affect operation of

the present inlet control system.
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9. Aircraft response to a coralplete and sustained opening of all the

bleed valves in one nacelle appears to be controllable and less violent

than an inlet unstart.

In view of the potential development problems associated with linear

bearings for a slide valve and the inherently faster response rate of the

poppet valve, it is recommended that shielded poppet valves installed in

the cowl be selected as the configuration for testing. The feasibility study

indicates that this configuration will provide the performance required for

the inlet shock stability system.
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nacelle angle of attack
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exit louver plenum

valve

free stream conditions

engine face station

Subscripts

1

I

.................. immmIiI



°
m °

°

F

R 1_ l_'IE RJj'N C ES

• : !J : ::?L_-?ili i::i

lo

2o

o

4.

Gebben, Vernon D. : "High Capacity, Compact Vortex Valve

for Increasing Stability of Supersonic Mixed-Compression Inlets"

NASA TN D-6662, Feb. 1972.

McLafferty, George: "A Study of Perforation Configurations for

Supersonic Diffusers", United Aircraft Corporation Research

Department Report R-53372-7, Dec. 1950.

Silsby, Norman S.: "External Interference Effects of Flow

Through Static-Pressure Orifices of an NACA Airspeed Head

at a Mach Number of 3'% NACA TN 4122, Oct. 1957.

Dewey, Paul E.: "An Investigation of the Discharge and Drag

Characteristics of Auxiliary Air Outlets Discharging into a

Transonic Stream", NACA TN 3466, July 1955.

2 ct



\

I

I
I

m

0

0 _

0 _ |

_ °'-_

0

,_ "_ "_ _"m_r._ t

F

¢
N
0

_ m

0 _

0

°p'l

0 ._

0

0
4._

0 0

/
/

U?

; L17 ?' ': T:.L:: : : _

B

L_

.<

L)

I

I

0

30



\

T r'-
I

b

i

i

External Flow

Orifice No. 1

,/, Jl

Duct Flow --_-

(a) Piston Actuated Valve

Duct Flow ___-

Engine

Face

Pressure

(b) Diston/_-%ellov.,s Actuated Valve

FIC L:RE 2. - SLIDE VAT,,E SCI_ENIATICS

31



r

\

1
I

External Flow

b:q. 2

---3[3O[3[3O[3[3[3[3[3

Orifice ?:o. 1

I_ No. 3

H

Duct Flow

(a) Piston Actuated Val_e

Exte r nal

Nacelle

Pressure
External Flow,. -

_DDD[]DDD_D

I

I__ Engine
Face

Pressure

Duct F1 o_v-----_

(b) Piston/l%llows Act_._atcd Valve

FIGUKE 3. - POPPET VALVE S_TIEMA[;CS

32



i l I Ii!

External Flow
h

Duct Flow

FIGURE 4. - SITIELDED POPPET VAI,VE SC]fEN{ATIC

33



" I ........

X

_!....................!.............................................

I
I

eq

_J

12 -

lO -

8 -

6 -

Z -

0

M -" 3+
o

Altih_de = Min.

_X =0

/3=0

Symbol PT2 /PT0

,-_ .785

0 .830

[3 .845

_ I I I l_ 1

40 _3_0_ 20 i0 0
I : i I I

(I_) (I0) (5) 0

Distance Forward of Throat, r m (in)

\

FIGURE 5. COWl, il;I['E!tI:A!, STATIC PKESH!!I<E D/S'FilIP, U'flOI

3-I



\
i

----7-----

i

I

i

04

_J

t_

cn

_J
t_

_J

4.a

u)

I0

8

6

4

Symbol PTz /PT0

A .785

0 .83O

.845

M = 3+
o

Altitude = Cruise

= 0

/9 = 0

l I I I I

4O
I

(15)

30 20 I0 0
I I 1

(1o) (5) o
..----

Distance Forward of Throat, crn (in)

- , .... PI_ I_,SSI :IrE D_STKI I:.[ :T_O7<FIC, UP_E 6. COWI, I,'Jq'EiC'4AI S.IAIIC .......



T-

i

t

--r-

:=---

io I-

6 -

m 4 -

O
Qr'_

0 ,

M = 3+
o

Altitude = Max.

oC-0
...._--o

Symbol PT2 / PT0_

i .785

O .830

[] ..... 845

7.

40 30 20 i0 0
I I I l

(is) (io) (s) o

Distance ],'orward of Throat, cn_ (ir_) _=

. T " ]FIGURE 7. - COWL IINTERI,AL STATIC I°RESSI_P,E DISTRIBUT:ON

36



\
i

F- T- f

: / .... _i::__:_ _: : /i ¸¸ : _- • !_}

¢q

O

_Q

m

I

M = 2o47
o

_= 00

10

8

4

2

Symbol Altltud_

I

0 Min.

Cruise

A Max

m

_

Open Sy_nbols: PT2/PT0 = ._4

Solid Symbols: PT2/PT0 = .691

l l l l l

40 30 20 I0
I I I

(15) (!0) (s)

Distance Forward of Throatl cm (in)

0

I_

0_--

r=.

Fi'_,UI{E 8. - COW1, tNU'E_IlTAI, SIi'A_T'TC PI{ESST"IE DTS'.FRTT r_,_>'JO_:

3T



\

3,%

L

3O

6O 6O

equal equal

FIGURE 9. - LOCATIO]< OF NACEI,],E ]_RESSUIiE POI<'}'S

.--:



.4 -

,,'4

• .

_J
O

0

_J

Symbols Identified

in Figure 9.

\

Cowl Lip Throat Station

-, Axial Posit; on

FIGURE 10. - NACELLE PRESSURE:DISTK!BUT!ON , O(=-!.56° .... :
:i ............

D

:.!#i;.4 .....

.2

-.2

,2

or-t

_J

O

_J

L.

Cowl Lip Throat Stati(,n

Axial Posit_nn

FIGURE II. - NACEIJ_E PRESSUI{.E DISTI{I]3I:TION, 0( :-.61"

3j



\
i

____----

4O

O.

u__

0
,_..q

0

0

&o

0
k

O_

.4

.2

0

'Cowl Lip

Symbols Identified

in Figure 9.

Throat Station

Axial Position

FIGURE iZ. - NACELLE PRESSURE DISTRIBUTION, 0_ = .35 °

O _ .4 I

.2 -

o

4

O
U

_ 0

m
if)

Cowl Lip Throat Station

Axial Position

FIGURE 13, - NACELIE PI{ESS[TRE I)ISTRI_)[' ]710:,,'"" C<-- 1..'o _ !



• [ -
I

!
i

•_4- Syn_bols Identified

in Figure 9.

.2 - L :. -t _:

Cowl Lap Throat Station

Axial Position

FIGURE 14. - NACEL!_E -RESSURE DIS_IRI_UTION, C_ = 2.25 °

.4

g .z
o

o

_ 0

%

LCowlIip 'I hroat Station

_0 2 "

Axial Position

.12

.r,I

0

__O

11)

°

FIGURE 15. - NACEI,I E t RESSI kE DTS'_' ]%UTIOY', 0_ = 3.1 _°

1i



r

\
[

J

..... ]

J

or._

0
L_

.6

Cowl lip

Symbols Identified

in Figure 9

Axial Posit_on

- ._:.

FI(;URE 16. - NACELLE ImI{ESSURE DIS']']<IZUT]O;_, <X : 4. 14 °



\

%)

O

L)

_0

0_

.8

.6

.4

.2

0

-.2

Cowl l_p

Sy1_bol s Identified

in Figure 9.

Throat Station

Axial Position

,, ..... 09 °
FIGURE 17. - NACEI_I,E PKESS_',I_E _-" ' _'

! 3



J

r"-

•! 4

.8

.6

0

.2

o .4

0

0

_ .Z

Syn_bols Identified

in Figure 9.

-.Z
Cowl lip Throat Station

Axial }_ositio_

FIGU]{E 13. - _<ACEI,],E PR._AZSI.!RE D_STI<]_'_"FIO::, 0(= <.03 °



_D
O

_0

Symbols Identified

in Figure 9.

Cowl ]_ip

A

Throat Station

Axial Position

• - , t_i,_ I)iS'L'i_TISI_TIOr;, O( ;'.98I,'ICIURE 19 :;ACEI,I,F; P](ESS r" ' _ - --- °



• I
..... m_

Syn_bols Identified

iK Figure 9.

.8

.6

o

O

O

o

.4

.2

0

-.2
Cowl I,ip

Axial Position

FIG[IRE 20. NACEi,I,E PI'ESSUI_E DISTR!I_UTIC)N, Oq = 7. 02 °

1'1



Wthe ° Theoretical inviscirl tw.,-dimensional
flow rate.

w
sonic

-_

= Sonic flow rate through perforation

_-area at inlet,.=_duct total._rressure__._ n;_

.25

.z0
o

o

.15

o

0

o .I0

J.t
o
o .05

0

o
,p4

_ 0

w

M D

P

T D

Duct Local Mach Number, M D

1.4

1.5

1.6

0 .10 .ZO .30

I

.40

Ratio of P,lecd Plenum Total Pressure to

Inlet Duct Total Pressure, PTB/PTD

FIGURE 21. - TtlEO!.LETICAI, PERJrORATI(}N FI,C)W RATE



r !

x.

m
co

;u

t_
0

0

- O _

O

oi
:_ o

<m

O

.9

.8

.7

.q

M D --

W
actual

W
theo.

= Measured flow rate

= Theoretical inviscid two-

dimensional flow rate

O = Data from fteI. 2

I I I I
0 l.Z 1.4 1.6 1.8 Z.O

Local Mach Number, M D

100

8O

t

60

40

20

FTC_T_I_E 2_. Eki'I'T,',,IATFtI) I.I.()W Or_q OV PC)I',c)C'S c:cj',V 1',' !]l.:r)



I

.!_ 57

Ca)

4

¢Z

o

O

_D

Z.5

M = 3+
O

Altitude = Cruise

o

o

o o

m<

2.0 - _ //Q Flow Out

__/// of Plenum =.-=- .

/ _ _ Flow Into

.u'. ...................................

Matc_ Point

1.0 I I I 1 I

Z.7 2.8 2_9 3..0 3.1

2
Nlcm

: Bleed Plenum Pressure, PTB,: .

FIGURE 24. - COWL BLEED PLENUM PJ_ESSURE MATCH POINT

3o I..&

, "kO_ M = 3-_, ¢_ -=--1-0°
O

PT2 = .730Recovery, /PTo

lO -

= left bottom right

I I I
0 I l

0 100 200 300

Ci rcumf,,rc,_tial ].ocat[_-, I3e'g,-rm'_
.>._--

IaI,,UI{I__"- " ,._=j. - COWT CIRCI!N.I1"E'-,Eb:'i'iAUL Pl,kS.'_ '_%[.I1t:; I)IS'I'_ TF',I:'5";(_>:_.



\

O

o_

O

o
O

.20

.15

.10

.-6 5

0

FIGURE 26,

5 0

_

--][

PWall

7. CII _,I. 8 Ft ._--

__--_.._ - m

m.

Estimated

Maximurn

Flow

P
Wall

P
Wall .....

_upe rc rit_c-al

.I0

Shock Trap Plenurn Pressure

1.8
1.4

1.

= 1.O

I 1 I

.20 .30 .40 .50

P
T

Ratio, B

P
T o

EFFECT OF SI_OCK POSITION ON FI,OW CIIARACTERISf.TCS

OF SttOCI,', TI',AP BI,EED



\

i ,,

I

___.._.__.____.._._:=.-_:_,VV-::_==' ._..::.,, :..,.

O

O

%

r_

ID

o
.x:

.3O

.25 -

.ZO -

.15 -

.I0 -

.05 _

0

0

Estimated

Maxi mum

Flow

P
WA I_,L

P
Wal!

P
Wall = I. 0

Supercritical

I 1 l

• I0 .20 .30 .40 . 50

P
T

Shocl: Trap Pl_,n_n_ Pressure Ratio, B

P

O

..... _(_,, (_;,: FI.()W CtIAi;.AC:TI';t?I,%:CSFI¢;_:I_1_2 /.7. - I,;F't,'F:C:'I' OF g:_(_Cl: t_( 'c:'' "

OI," hl()l)Ihql,;I) :4} I ( }C: !,L i_:A) _ t',!.},;l":l) ._1
i



-r---u-u.
I

O

_0
r-4

°r-4

_°

U

8

6

4

3/4 - 4.84 - FST

3/4 - 6.45 - leST

3/4- 12.90- FST

i itlal
pressure,

- \_. \

I l I 1 ]

4 6 8 1O 12 _4

N

Nozzle Supply Pressure,

FIGURE 2.8. VOIITI,_.X VALVi _] BT_EED FI_OW INCIII£NII£NT DUE TO

20 PERC'E)_T IT_, ..RI,]ASI _] IN t_.].]£Ei_ _I_I,]_;,_J[J._];i

52



!:i_K:!ii!:_!i.!:.:ii!!i-K::iii.i:ii::_i_i_i:_i!_!!!'_!:i:_C_!!_!:i!!:i_i':_K/::_:!!::_!i'!TKi::.!:':7_i__::"_i_.if:i: _L i:_: "/-_i

_C iiii:!!_!-:::bi!i.Ci !:!!iKi_::-::::__:_:::::..::::::::I:!I!/KK_:'-:i!i._!!:__i_iK:i_::_!::Kii_!_!i_i._!_U!_!:!_!_!i_:K':i:!_K_._K!_i_:/::!K_!_K_:K!_::_Ki-L:_!!_:i!K_iiA_ iKii_i:i!:_!- : ::iiv_i
.......:'L i!!_%:i_"_':_:':_:'-:::":iiii:K_:!!ii_:!i:iCi_i!.i!7!i_ii:K_i:_:i!i:!:K_:':_:_i!!::_!!!i!ii!!::ii_!i!_ii_i_i_Ki_:__i:i_i.:_!:!"[_:_.:_iiiiKiiii'!:::_:!_:_!-!_!i-!-'_i!i!:ii_:_!i_i:!.__ii,_K:i!ii-i':!:_!!:_! : _::'_

O

O
O

I0

6

4

2

3/4 - 4.84 - FST

3/4 - 6.45 - FST

3/4 12.90 - FST

FIGURE 29.

8 10.__..... ._.:_-:_1 Z

N
Nozzle Supply Pressure, cn-_ --

14

LEAKAGE BLEED FLOW IN VOKTEX VALVE

_3



\

314 - 6.45 - FST

-- 3/4- 6.45- lID

I0 -

O

6

¢)
¢)

°tit

4

¢)

r\

/\
/ \

I
\I

\I

/
/

I

/
/

/

/

\
\
\
\
\

\
\

\ / \ / \

/ _\// __ _\\

/_XX ', k--X( ---- k' I_dtiai bleed pressure.

/ . \\ \\ 3.7 .

0 1 _ "l_b_ _ _1 x 1

4 6 8 i0 12 14
N

Nozzle Supply Pressure, ---2..... C IT1

FIGURE 30.
VORTEX VAJ..VE BI,EED FLOW IiXCI_EMENI DUE TO

Z0 PERCENT INCREASE IN BI,EED PRESSURE

54

........ L l i --- , m 1



b

,%. _.

3/4 - 6.45 - FST

3/4 - 6.45 RD

_ .!'-:.-,

10 -

8

6

4

0
4

\

\

\
\

\

-\\\ \\\\ __\\\

\ _ _ 2X _ _, Bleed pressure, N/cm

6- 8 I0 12

N

Nozzle Supply Pressure, c--_2

I

14

FIGURE 31. I,EAI_AGE BI.EED FI.OW IN VORTEX VALVE

55

:L



• r -- .....T-- r--- T-
I J

T F
' 1

O

0 3/4 - 6.4s - _ST

n 3/4 lZ. 90 _ST
O 7/8 - 8.38 - FST

3/4 - 6.45 - RD

• • i.........._Z i .......

I0 -

8

6

4
n

Z -

0

2.0

Increase in bleed flov.

. _ for 20 percent increase

j ....................._ _[pressure

(_ .-.- I-" initial-bl:e"fi:d=_ressure ......

-_1 I I ]

2.5 3.0 3.5 4.0

N

Initial Bleed Pressure, cm 2

FIGURE 32. EFFECT 0]" BI_EED PRESSURE ON VO]<TEX VAI.VE

LEAKAGE AND IiNCI-IEXIENTAI_ B I,EED FI.O%VS

56



D

i

_==T_

L

L3

A

3/4- 12.90- FST

7/8 - 8. 38 - FST

3/4 - 6.45 - RD

QJ

¢)

_0

A

!

tt_

I

O

¢J

O

%)

O

QJ
01

o

8O

6O

4O

2O

0

-20

Q

-4_0

\

hJ

Bleed flow increase

fo'r 20 percent incr,_ase

in bleed pressure

Leakage flow

t I I I I

2.0 2.5 3.0 3.5 4.0

Initial. B]l'ed Pr(;,_sure,
N

Clrll _-

................................................... r ............... :. .....



x.

_----v--:: ::L¸

a)

O,

O

e4

O

N-4

,--4

u_

.,-4

0,

5S

2U

I0

0

-i0

--=_0-

-30

Q

-4O

I,OU ve r

_. Scale Area

2
0._. 3/4 6.45cm

A 3/4 6.45

3/4 6.45
to to

7/8 __ 9_a_--

. : ;SF :g,:p

FST

RD

FST

m

Initial t_leed

Pressure

2.93 iN/cm 2

2.93

2.41

to

3.79

. -/

i I

/

/

/

/

/

I
/

/

" ./ ...............

/

/

1 1

\\

1 1

-15 -I0 -5 0 5 I0

a__.

Change in Nozzle Pressure from Optimum, Percent

FIGURE 34. EFFECT OF NOZZI.E PRESSURE ON }3LE/_D FIOW

IN C R EM ENT



\

o

o
¢h

O

_0

o

O

250

200

150

I00

5O

.5O

-100

\

\

I ,OUVO r

Sy_n. Scale Area Design
9

O 3/4 6.45cm" FST 2.93

A 3/4 6.45 RD 2.93

]_ 3/4 6.45 2.41to to FST to

7/8 12. 90 3.79

\

\
\

\

\
\

\
\

\
\

\

\

\\

_. \

\

,

1 I 1 I

-15 -I0 -5 0 5 I0

Initial Bleed

Pl'c s _ ur(_

2
N/cn_

FIGURE 35.

Chan_c in Nozzle Pressure fron_ Opiin_urn, Perce.nt

C.c,l--_ _* r ....EFFECT or" NOZZI,E Pt,',E,;._ :.E C)7: T.EA_,A_,E, ! 6_,7



2
Shock Trap

Aft Cowl

F,vd. Cowl

."T-

Nu rrlb e r

of

Valve s

Initial Bleed Nozzle

Pressure Pressure

NJ__/cm a

3.76 9.03 96

3.58 8.62 48

2.41 5.52 48

Leakage
Flow Ratio

/w
w t_eal:a_ze o

.00207

.00103

.00075

O
P-I

• 020-_-

.015 -

.010

.005

0

0

1.0

Shock Trap

Aft Cowl

Forward Cowl

Ratio of Final to Initial Bleed Pressure

._ 7::>J!')ii : _k

'i ' .i.!<:7;ii 5:?

FIGURE 36. VORTEX VALVE BI,EED FLOW IIVCREME>:TS

6O



Cowl

Flow

Slide Valve Location

e d c b a

Nominal

Shock

Location

C

d

c

I.73 I. 77 1.-50

1.73 1.67 I. 35

I. 73 I. 53 .87

I. 73 •70 .86

4 ..............

1.47

I.-32

.95

.95

Normal operating condLtge_-

Peak stable recovery

FIGURE 37. EFFECT OF" TERMINAL SIIOCt_ POSITION ON DUCT

MACtt L;UMBEF?S AT SLIDE VAI,VE I_OCA ''rj,O_,,,"'

M O = 3_



MO = 3+

•025 -

.020 -

0

.015 -

.010 -

O

.oo5 -

i

0

.02

/

w = 24 x flow through

one louver slot

! I I I

.04 .06

I_mver Pressure txalil( ,

.08 .I0

P /P .
T L T -_-

1

• F2....

FIGURE 38. FI,OW TttP, OUGtI SI,IDE VA1,VE ICXIT I,OUVEP, S

(,2



O

op,(

, O

%

M = 3-t"
O

PTI/PTo = .06

.025

F
"°2° I

.015 -

.010 -

.005 -

1

0

.04

......................................... Valve 0PC N:.ng, A x = 2. 54cm

w = 24 x flow through one

,_alve or louver slot

Valve flow

LOLl _'e r

flow

FIGIIRE 39.

Bleed Plenum Pressure Ratio. PT /P
B TO

.-
EFFECT OF VA I_VI,; "t:_¢-_I-T-_!_4--43]q--Fq,O&V TI{ROUGIt

SI,IDE VAr.VE

- i



r

O

,u,-(
4-1

O

r/l

• e3o

• 025

•02O

.015

.010

Valve flow

- Louver

flow --_

M =31
0

I) _.

'-j:L/PTo
•O85

Valve opening, _x = ?. 54cm

/

w = 24 x flow through one

v a-Lv-e.--_--1 ou v e r slot

i • 08 . 10

Bleed Plenum Pressure Ratio, PTB/PTo

_('I I ,URE 4_. EFFECT OIF VAJ,VE t'OSITION ON FIA-)W TIIROIJGI!

5I,IDE VA I,VE

64

!'



"x.

0

d

o_

0

g]
ao
t_

M_-= 3+

P /P = . 106
I'1, T O

• O3O

.025

• 020

.015 -

.OIO -

.O05 -

q

O

• .10

Valve opening, '*.-:x = 2.54cm

. -_ _ _90

-- -- -_ Zuver flo'w

/

_ : I : _, I _ I'" : ] I I i _= ".Z4..x. flow. through on_

valve or louver slot

.12 .14 .16 .18 .20

B]eed Plenum Pressure Ratio, PTB/PTo

FIGURE 41. EI,'FECT O j:" VAI,V]C POSITION ON FI_OW TtIROVK;i[
SI,IDE VAI.VE



"x,
J

;°;

i

M O = 3+

w = 24 x flow through one of the three bleed

compartments in a slide valve

0

0

%

.O8

.06

.04

0

Flow through duct perforations

with duct Mach number

M D = 1. 20

!.: 40 _, Flow through valve and
-'_ _ louver with ,,alv_ operftng

I. 60_ "4 I. 9o

1.80 \ \ 1.27

0 . l0 . ZO . 30 .40

/ P
Bleed Plenul_ t-_ressure Ratio, PTF ' T_

FIG Ut{ I!; 42. EFFEC'F Ot," DI:(:7" MA(2It 7;IT,kli',F't', AT,<D VAI.VF5

IJ()S!'l'I()?( O7 I_'I.OW _j'[._l_()r](ilI Si.II)t:; VA!.VE

{'l £_

°

l -7



o

(#
3--

¢Z

o
j _4

M O = 3_

w = 24 x flow through one of the three bleed

co;_-partments in a slide valve

.20

.15

.i0

0

Flow through duct perforations
with duct Math nunlber

M = .6_Ii
D

.70

8o \

9O

f

• 20 .40

Flow through valve

and louver with

M D = .40 Ax = 2.54cm
/

/

•60 .80

"2 '-

-- Bleed I_lr'mlnl l_rcs.-ure Ratio, PT /P
=-: B T O

I.'IGIIRE .t3. EFt.'t.;CT Ot:" I_,T(':T MACti ?',TINIT_ER A]"'D N'AT,VE

POS['[!(_I', OI.; t:I.OW I'I!t.;OU(;[f ,qI.illt.; VAI.Vt,2

;,7



!
x.

------r

i

"1}" -. _" • "

!,

I

Cowl

Wall _-
Forwarcl __

Valve s "

-qf L

d c

Aft

Valve s --*'-

Nominal Shock

Localion _I I gf z

a* 1.749 i. 590

b** i. 749 I. 452.

c i. 749 . 778

d .706 .87Z

* Normal Operating Condition

'1_* Peak Stal)]e P, ecovery

FICII1P, E 44. t't;'t.'I-'(:T Ot." 'Yt'2RMINAI SIIOCI'_ t_osr'FIOiN ON DIJCT

M = 3_
()



........ ,]"

\

Y---
..... ::'_ =:7

I

m

y

::_ :ii:i:¸{_i::::_Y: i

m
m:

_Cowl

Wall _ Forward --__
Valve s

Flow L

Aft

Valves

•..-'_ " 5 --

i
d c b

1Nominal Shock

Location M
2

a_-" I. 227

b =:'-_-" I. 227

c

d .912

# iNormal operating condition

':'_"Peak sta+_-l-e-r.eeove-ry--

I
a

i

:: ......... FIG UR _-_ 4 51 EFFECT OF" TERMINAl, SIIOCK POSITION ON DUCT

MACtI NUMBEt< AT POPPET VALVE LOCATION,

M O = Z. 47

(,



! =----------"(

i
I

g

Flow through 24 forward

or aft poppet valves

F

Valve Opening, Ax

/5 0. 64cm

O 1. zv
[] 1.90

0 2.54

Flow through

exit louvers

h

Bleed Plenum Pressure

Ratio, PTB/PT O
.I0

.35

..... 55

Minimum area in Exit

I/o_ve rs

2 2
• 79 m . 186 m

........... FIGU KE' 4 _'.

- _ -A--- - -_ - --/k..

0: L I [

_i _:i: . ::: 5 10 15 20

i.: " Louver Pressure Ratio, PT /Po
L

_:F 03." PRESSII!_E AND VAI,VE POSTTION 0,"(

FI,OW TIIROI'GIt l-t FOt_WAIID OK AFT POPPET

VALVES, M O = 3+

7O



Valve Opening, Ax

,IX 0. 64 cm

O 1.2v
K]" 1.90

O 2.54

Flow through exit louvers

with mininium area in exit =

Bleed Plenunl Pressure

Ratio, DTB/DTo

.10

.... 35

.55

•08

0

o

Lines through

symbols denote flow

through 24 forward

or aft poppet

2
•279m .232

•186

2 4 6

.139

\

C_ .093

Louver Pressure Ratio, P /P
r O

L

FIGURE ,;7. EFFECT OF PRHSqUt_E AND VAI,VE POSITION Of',"

tl ' T •.,FI,O_,\ r T[IP, O, (,_ 24 7,'O]_WAi_D OR AFT t_Ot_PF'v

VAI,V]'2S, M O = 2.-17



._,-- -

2
A = .186 m

EXIT Valve Opening,

2. 54 crn

/k X

O

8

O

Duct

1.20

1.40

1.60

Mach

•9O

IN*umb er N

.60
.70

•80

1.90

0.64

I
L 60 8o

0 0 .20 .40 • •

Bleed Plenum Pressure Ratio, PTB/PTo

FIGURE 48. EFFECT OF" DUCT MACH NUMBER AND VAI,VE

,: _ :;+:i%:_::_:N£Vieg;Ki o _3_ ..................

72



I

! I

2

AEXIT = .186m

Duct Mach Number

•I0_ 0 90 0.80 Valve Opening, Ax

2.54cm

-- O

.°

O

FIGURE 49.

1.20

0.95

\
1.90

1.40 1.27

•O4

1.60

0. 64

0

0

EFFECT OF DUCT MACI{ NIIN_}%ER ANT VAI,VE

IJOS[q'!OT; O_; ]'J,O_V Ti[R(J',<(]II2.1 A I"T Pf]I_I_I']I'

VAT.\'ES, _',._ :..?-,:!7...........................
<)



7 T

2

AEXIT = .186m

o

--4-
,r'¢
4.a

o

0_

74

1.40

Duct Mach

Number

.9O

°95

1.60

.60

.70 \

FIGU}{E 50,

• 40 Valve opening, _x

2.54 cm

5.90

•20 .40 .60

Bleed Plenum Pressure Ratio,

1.27

0.64

.8O

PTB/PT O

EFFECT OF DUCT MACIT NUMBER AT';D VAI.VE

POSITIO_q Oi': r.I.OW TIIXOUGH 24 I:'OllWARD

POPPET VALVES, Nf = 3+
O



.14

.12

.10

• 08

.O6
cO

O

.04
o1
cO

.0g-

0

::::!:i-_.-:::r:::::_i:!i:!:i:i•:7!-: ::

valve opt.ning, A × = 2. 54. cm:.:ii:!_!:..i::T:i.+::Li!_.::::..._i.:i::::_._i::i:L:.ii:.:..:..::--

M D = 0.70

M O = 34

0.80

0.95

0.80 .....

z __}

1 1

.10 ,15 .20

I I

• 25 . 30

2
Minimum Area in Exit Louvers, m

FIGURE 51. EFFECT C)F EXIT I.O[:VI.:R .,%RI,:A OJ'{ FI.OV,'

TIIRO_:C;i_ 24 .',.FT }'()t_PJ,:T V.'\I_\'YS

-I .



g

m

1

P1 P2,-

w

w

w
= go> h2A Ap

where: a
_0

F
h

A

Ap

L
1

W

g
= I00 crn kg/N s

= average density in leakage path,

= piston clearance, cm

2
= ---leaka'ge-area',- crn

= pressurc drop along leakage path,

= viscosity, k¢/s em

= length'of'leakage path, cm

= flow rate, kR/s

3
kg/cm

N/cm

FIGURE q2. PISTON ],Iq,,\KAGE FI,OW

7 _"



A
orif

/ J J ,,," s. l j l _" Z ,,, l_L.Z.._

pl 7 Pz
'////,,,-,,, ,2///,,

.04

O

upper scale

lower scale

- 1 I I 1

1 2 3 4 5

1.00 1.05 I. I0 I. 15 I. Z0

1

6

I.Z5
.......... i

P

Orifice Pressure Ratio, io ......::::::::::::::::::::::::::::::::::::::::....................

• .?'_ ::':-. i 'i "?.: _ F:'..":! .:L7I :": "::

::.:: . : .: .:-..: . : :::; .....: ....... .:.. :..: : ...::::..::....

!. : . •

FIGURE 53. O}_IFICE FLOIV C}]ARACTERISTICS

77



V

m.

x_.. i _J ,,
P PB

o. 32 ---4l-'- A
PC

1.5-

F = C (PA + l°B +-PC )
aerodynamic 1

C,
v 1.0 -

O

Q_

O
%

o 0.5 -

>,

O

'¢ 0

0

• _.
• i

1 , 1 i l I J

0.5 1.0 ------1.5 2.0 2.5 3.0

Valve Position, x _ cm

FIGURE

• " [: :: : :: :: -:.:::.: ........................................... ..............................

54. AEIlf)i3Y_AMIC FORCE ON SLIDE VXLVE

: i



L

_ -T ............ _ ..... q

J

N

N

A

U

O

k
O

U
,e-I

0
k

4

3

x

_ --T-
... B

F . = C2 PB for x > 0 /

_ -

0

1

0.5

] 1 ]

1.0 1.5 2. O

Valve Position, x _- cm

l

2.5

FIGURE 55. AERODYNAMIC FORCE ON UNSHI}CI_DED

I_OI_PI£ T VALVE



II_ > l __ 1
1

4

_9

0
°r-4

or-_

Z
O

>

>

0

n_ax.

Mo= 3_-

Altitude = cruise

open

[

E4
o

o2

i

_

._f- aft L]eed plenum

valve plenum

[ 1 I [ 1

0 .05 .10 .15

Tin]e, s

FIGURE $6. RF_SPONS_E'..(2I: SL!V)IC--VAT_V}C TO STEP C}t\NGE

-- IN B];,],;I,:I) I)RE,%S( _l_ 1,]



\

r

_3

O

o_

>

tM

k

0_

M = 34
(I

Altitu'te = Ceui:;e

Max Open

2 -

1 -

0 .I

4

------ Aft Bleed

-
\ a, uve Plc1_urn

I I I I I

P]eD_ln,

0 :: :

,.C :

FIGUR}_ 57.

_ Throat
! ,.,adinv E.!:.e •

__ of Cowl _]eed [

O .05
1 J

• 10 . [5 .ZO

RESPONSE OF SI.IDE VALV]'2 TO TERMINAL SttOCN MOVENIJCL:"

L, 1



M = 3+

Altitude ° : Max.

3

o 2

0

>

r_
> 0

_2
t_

D

_

3 -

2 -

0

_-- Max Open

_ \

t Bleed Plenum

I 1 t I !

0

0

0

"_--- Throat

Lcadinq Ed,_ e_
of Cowl I%leed 1 1 1 I

0 .Oh . i0 .15 .20

F[(;UI_.E 58.

82

'7i lno, s

RI*,'SPO." SE OV ST Dt.2 %'AS,\'H ")*O TERMT;'.A_, STTOC!-'. MO'.E.,.}.NT



P

M = 3-I
(I

_!titxlde = Cmfise

0

0

>

>

e_

3 _ Max

2 -

1 -

4 -

3 -

2 -

i -

0

Open -

I__ t

..:_ .721 :

Aft _lc, ed P] ....". e .....].

J

Valve Plcrmm

[ l ] I
0 . ]0 .20 .30 .40

q'i Ille _ S

FIGURE %9. RESPOI',SIE OF St._I)E VAI,VE TO 10 tItERTZ BI,EED

PR I_I_SUP,E OSCI ].I._

.'-:::5 ,.CZ

_f



:i ",.

7"--"

M =-3+ -

Altltnlde = Cruise

_J

O

G

o
>

>

e_

d

3

2

1

0

- OpMax erl

I I

m

3 -

2 -

I

1 -

0

Aft Bleed P]ermr'n

/-

ValveP1cnun_

......_ _ _--_._

I_'j :f't/.E /'0. RI-2,SI'O?:SE '_F ,q _I)E VAI,Vt,; "70 ,t0 tIt£RTZ 'I_Et£I)

t KI:,S._I;RI': OS(:ir I.A_,O,,



" r - F----

E

O
,,'4
4-J

O

>
e_

0_
>

• M := 3t .....
(,

Altitu:ie = Cruise-

Max Open

_-=
_ Bleed Cc, rnpar_nlent_

/ _ !Final Confi_;uradun"

""" ...... ":" ..... _ "_- f 3 Compartn_ents

u 7I6 -

5-

._

3 -

2 I I I I

0

o
0

FIGURE 6 1,

__--- -5 .-:
-._=-

Th roar

Cowl B le e_-lw-E--:-.

1 1

0 .05

1 I

.10 .15

Time, s

EFt, E.., OF BLE}-2]] COMPA!<'I'ME?_TA'FI('_', OL': S"..IDr,
VA.I,VN 1<},]S tJO?,SE

: 5

m



r

_ _i!i_!L!:_ i _:_, _!_:.:_.i i__. :_

T-'------!

O
,r-I
4_

O

t,,l

tD

2

1

FRO.}!' RE 62.

_

1 -

0

M = 3+
o

Altitude = Cruise

Prelindnary Configuration
with Ocifice Danmer Valve

Max Open

" '1 1

I 1

_

4 -

3 -

0

-_ Bleed Plenum

/ _ Valw TM. Plenum

i f _\ _-

" • t --_ " I" \ I \ I \., f

\ I _,j ""

l 1 1

0 .05 .lO

AFT POPt_E'i- ' VAI.VI_; CI,OS71";(_1 D'x'_,iAki_C,%



"N

O

.,'-4

O

>

1 -

0

I

M = 34
0

Altitude = Cruise

Max Open

Prelin_inary Cc;nfigura'.ion

with Orifice Datl,per Valve

:. ":i " . : .....

l I 1 I l

O

5

4

1

0

m S ]3]eed Plenun_

'a l°lenuln

1 1 1 1 ]

0 .0-3 . 10 .15 .20

Ti me, s

Fit,r- R , ,,,. _ E 63, AVT POt't)t';i" ",'A \'t'_ C! OS_::.c_i I)Y;:A._,T¢:5



-'7 v 'T
I

u

O

O

O
>

i,-,4

>

o

G

o
I-i

m
B

M -- 3+
o

A]titude = Cruise

Max Open

5

4

Z

1

I

s Bleed Pie,lure

Valve Plenum

1

=-
-=__

m m

_-- -!

t 1 1 I ]

0 .02. .04 .04 .Cig

FI %_,"R E {,-_,,

_'iIIIC, >

I.',ESPO_'<SE OF !'7S"-tCr,D[':D At.'% P(-)_)i"E'7 VA].\E {C)

27 })EI{(:i,:7,, STE}' _"].A:. :E .::, _,,' F:},:I) }' '].:._S" .... E



7
Ii

0

°_,,_

m

O

>
r-.

>

2

1

0

M -- 2,,47
0

Altitude == Cruise

L -- J I 7-';_ __•_:

m

(.j

m

4

2

q

1

K Valve

P]. _211U In

Ple hum

I I
Z

.. ..: :: {7!::0 : .:_:,05

1 ! I

• 10 .15 .2(}

Tin,e, s



: ,
-I;

M = 3+
o

Altitude = Cruise

0

0
P_

¢)
>

>

m

Max Open

2 -

i _

0 i

g

4 -

3 -

Z

l

0

'- B]eed Plenum

1 I I 1 I

0 . i0 .20 .30 .40

"J'jl:_e, 5

v E T 0

9 0



0

.,-4

0

¢J
>

> 0

M = 3+
o

Altitude = Cr_dse

Max Open

-- -- _ _ .-- -- __= _
_.--- . _ _ -_._= _

_.-_-.-# ;_.- _. _.-.=.-- .....

-Z

e,a

o

4

2

1

0

- _--- \ alvc Plcnum

0

l 1 1 I 1

,OZ ,o4 ,06 ,08 , 10

........ ,)c,,,.T _ _'T():i•t0 ...... '" ' I.]i) 1'!(i.2_5 }.] , ._. A



•- :F _ ................. r

-L_ ,-

J
I

!
i

M = 3
o

Alti0_d,: = Min.

r
T

.i

co

ff
O

°r.4

O

O
>

>

15

Max Open

1 \ I

-.--.

l

¢M

Z

u-__

_,.) .

10

0

_7 Bleed Plenum

____%- ---> __-_
Valve P] cnam

l I 1 I

.T_.--"-i-_k =

if" - >-k:

O
°_._
4.a

O

u
O

,I2

=.

,i

Cow] BJeed L. }'2.
1 I 1 1 1

o .05 . Io . I5 .2O

"lFilz_c',

FI<iU}{E 6,,. RIF_q}_OT,S< OF" ":,S:J'EI I_ED AI"!" t_O}_tU'Yi VAI.VE TO

TEL_M/I AT, S'iOCY" MOVENIt<°TI '

-._.._:



d
©

o..._

0

o
>

r'q

>

¢,q

t,,)

_2

*° }-{

0-,

_: ..... .-- -v'- .......-_._--.-!......

o

Altitude. = M_i:_,

Z

I

0

Max Op,_ n

1

15

10

I

Bleed Plenum

Valve Plen;lm

[ 1

0

0

o
0

U3

Th rc_a4--_

_--- Cowl B]e-_d ],. E.
I, __ l

0 .05

S j
_/

I 1____

.10 .15

Ti n_e, s

RESPO:.SE ()F r'j S_'rEI.DEI)AK'i7 POt_DE, T VAI.\-E %:'0

TEI_Xi;_TA!. S OCK ',,!OVFN_I,;2,T

!??'iK5:::
"}?::iN)i

• °

':J



]-
W

. . • t t ......

r T -r-

_' '!'ii"_i_!!__:_'"_!_?__'_"___"]_']_ " .........................................

o

o

>

t_
> 0

M = 31
O

A]titu(]e = Min.

M_x Opc_n

I

10

t,q

(J

5

tO

',.rJ

C)

o

o

o

F T(;T'}_E 70.

]_,lee(]

I [ I

Plenu n]

7
J

T}_ r ,_at

-co,v,
0 • dl

l !

.0_ .03

}<ESPO},SE OF 1,:.T;S::-<,:i-]".I)]::I_ ;.'()]',WA".I) }'()PPI,;J VA: VE

l'O T ]," ' : :,,l T:,,:_'..r't-S -._,i_,("t. .',JC_V].; Xl }.iT:]"

') t



"-T I

M = 3t
....... : , 0

Altitude = Max.

q;

o

o
O_

>

z

N

o

i0

o

.r-t
t;1

o

o

o_

FIGURE 71.

Bleed Plenum

I I l !

'L

..__ Throat

0 .01

I

.OZ .O3

Ti me, s

RESPO_<SE OF ,.:.S,dEI.DEI] ],"OK}VA}ID POPPET VALVE

TO U'EI<M]NA[ S,!OC] ./ MO\EN,IENI

95



i \

___ - _.].___ :......
Z---

f

i

3
£J

O

u_

o

O
>

0

i0

tk]

O

); 5:

1'4

ca

I4

M = 2.47
o

A]',.itude = Min.

Max Open

I L l,

Bleed Plenum

0
QJ,4

'¢,
0

l,J
0

! t I t

0 . O5 .10 .15

l

.20

FI,,L I<E 7;!.

"l_in]c, S

RES} O_, SE OF I':S.L_ET,DED AFT POPPET VAI,VE TO

%.'E]{M[]<AI, S[-]OCK MOVEME]:rl '

96



I .....
-W'- T-- F"-- IT- -H

i

M = 2.4-7
o

Altitude = Max.

3

d
0

2

0

¢J

0

:w r.=:- --: I

Max Open

N

o3
"--'CO

I0

jr-- .Bleed P]en_am
¥

O
o1"1

O

,t

O

FIGURE 73.

I ! l I L

0 .05 ,lO .15 .20

Tin ,e,

RESPOi"<St:] OF "[;_'S;I]Er.DED A]'-'_C t_'Ot)I_E'J. ' VA],VE '1'O

TEi-IM]t"A [. S_ [OC I< MOVEMI".]]",!_

9"7



-X

M = 2.47
o

Altit_tde = Min.

u

O

O

>

o_

Max Open

2-

I_

0 f

Friction

4.45N

13.35 N

O
8_

O

o

_O

FIGURE 74.

Throat

Cowl Bleed L. E.

1 I 1 I I

0 .05 .I0 .15 .20

Ti me, s

EFFECT OF FRICT;ON ON RESPONSE OF" LY,S,:,E_,,DED AF-.

POPPET VA1,VE '_0 TERMINAl, S,!OCK MOVEME[,T

98



\

r" "T-

M = 2.47
o

.Altitude = Min.

0

°,.J

Max Open

0

10 -

¢,1

'.o

Plenum

Plenum

I I I I

o

O

u
0

u?

Ft,.;URE 75.

l t

0 .05 .10

I

.15

TilIlCj S

RESPONSE OF UNS'IJ/ELDED AFT POPPEr]' VALVE TO

_i'ERMilqA I, S!-!OCt< MOVEME_"T

99

L



J

O

g)
O

>
,-'4

_>

¢M

E

d

gl

3

2

0

4

M = 3+
o

Altitude = Cruise

Max Open

- F B]eed Plenum

p,
[
t-

• L

Valve Plenum

0 .02 .04 .06 .03

FIGURE 76.

Ti rI_c, s

RESPONSE OF UNS_!IEI,I3ED AFT POPPET VAI,VE TO 15

PE.t{CE:,J S_t'EP CtTA? (;E '"' I,_.EEI3 ]°kESS_'I<E

1 O0



\ I

i

..... T_ _
I

M = 3+
0

Altitude = Cruise

o

,r-I
_n

o

>
,-M

>

3_ Max°pn /7 -

2. | Pressure Step = 27°,._, //25 •

o 1 1

Pressure Step = 27% 25

I'[r'IR}',", ,, 77.

20 15

.//

/

0 . 01 . 02 . 03 . 04

TitTle, s

.O5

R}'YSPC)T:Si: ()]" S}!IEi I)I"D A}:rl ' PC)/_P}<II" \'Ai,VI _] "FO STI']I'

('tlAT,,C;I,]S .¢i, l)[[Cq' t_],'ESS[;i_H

1oi



J

I

T Tr .

I
M = 3+

o

Altitude = Max

L

ca

2

O
of,._
.40

• _"4

m.

#,

)" 1

Z:--:!:'!. .i-

4 -
¢M

¢O

2

F }"eTuAJd_=_ 7F,.

Pressure S_ep = 27 _'-

Max Open

i 1 1 1

25

20 ...... t

Pressure Si:ep = Z7'_%

..... _I_ .)_

l l [ t 1 I

0 .01 .03 .03 .0.i .05

Tinie, s

P, ESP();_SE OF S_ i F] .,".D /:] IT) A_t" _'()lJ},i.TF VA!,Vt.Z 'i'(__ ,hi i.Lt _
CTIAT;eiES _",, l)/:c:l" l':'l,]YiS'_":,I _



7

\

T
i

r ......... t

i

i
I
I

F'-

1

M
o

Altit_,le

= 34"

= Cruise

O

5___o

>

0

4
e4

G
3

_o

la

FIG T_TR E

Max Open

/
f

I 1 i

I
209_ Pres.sure Step

I I I I t

0 .2 .4 .6 ,8

_'i l_nep s

7'7, I{ESPONSE OF S,"[TE!.T)EP, AI.'T PC)PPE_Y VA T,VE

....... i mnmmmn

t (,# ) i-,__cJ '_ l."> ('" T,'" "_:"

I f)3



F----

g,

o

o

>

>

O

o

o

Z -

I -

0

FI(;U K E 80.

104

M = %-t-
0

Alfitu,,1, • : Min.

Max Open

Max Open

I

/
C]o._ing motion of

unshield_.d valve

I

f

/"
._J \
I- \

Shielded

_.J

va! v.:.

_-- J,cading Edge

of Cow1 Bleed

I I 1 1 I I I l

0 .02 .0,t .06 .08 . 10 . 12 . 1t

Tinle, s

EFFECT ON S[UE_.I') ON P ESPOb:SE OF AFT POPI-'ET VA: VE

TO k'EItMII<A[. S, iO(:l" N,IOVE>_II']7',VI"



'M
o

Alti tude

= 3+

= Max,

i

_0

O

O

>

0

Max Open

/
I I i I I I 1

O

4,a

• .t)

O
,12

' iThr°at,. .

Jeaqlng Edge

c_f Cowl iBleed I I

0 .OZ .04 .06

B

m

I I I I I

.08 .10 .12 .14 .16

Time, s

FIGURE 81. RESPONSE OF StIIEI.DED AFT POPPET VALVE TO TERMII',A].
S!IOCK MOVEMENT

105

J



A__

N
i

T-
4

I

O

O
,-4
4.a

O

0_

¢)

>
c_

>

1 -

0

Sylnbol

M
(_

Alti tud,

Max Open

Max Open

Sh i eld

on

off

)' :C

\

\

'\

\\

[-\
i

/ \

I \
i 1

I
\

I

\=- !
\

1
\

.L
!

I, I I

0

"g,
0

U
0

a:
u_

I,eadi nf; Edee ........

of Cowl Bleed

.... I 1 I I 1 1 I f

0 .0at .0,t .06 .0,_ . 10 . 1Z . 14

Time, s

FI,;t;IKE 82. EFFICC'I' OF SIIiEI D ()i_: f',ESP()_SE" Oli" A}"'_ POPt_ET VAT.VE

TO TEI_.MII'_A!. S_'O(:I( MOVEME,".I.'

I06



"x,

Z.0

1.5

U

r2
O

°r-I

°,.d

_.. 1.0
O
n_

o_

>

.5

I

M -34-
o

Altitude :: Mi21.

I 1
I

O

O
0_

O

_0

t

Throat

M'duct =

, _ ] ; 590
._ __.__ _ J.l" 530470

J_,eact{ n_; EdAe

of Cowl Bleed
1 I I 1 1

0 . 10 . 20 . 30 .40

Ti me, s

FIGI!RE 83. 1REStK)?;SE C)l." S)TTET.I)t,;I) AFT t_Ot'}_}_;'l ' VAI,Vt."

t,I.t,ED t}R:.;S:_I:RE ()SCII,I,ATION

'1'O 4 tll'2_K'J" Z

107



\
I

M = 3+
t.)

,, 2

u
=L.

0

,r,.4

0

>

Max Open

_I I,, I I J

0

tO
°__

Throat

Leading Edge

of Cowl Bleed

FIGUI_E 8-1.

r16

RESI-O]';SE OF S'_!IE/.DED At.'7' POPPET

tt1,Et.]D I']{ESS'jl<E OSC:I],].ATtON

VALVE TO t0 '_,:Ia]7,TZ

I (]i.',



\

Duct

Math

_un_bcr

1.590

1.452

T[ ITAe

0

,r-I

0

>

>
0

2.50

Z.00

I_50

1.00

i

\

\
\

\

_w

2 3 5 I0 Z0 30

Frequency, }Iz

______-J

5O I00

FIGURE 8%. IlESPO!NSE OF S_:IE_.I]ED AFT POPPET VA].\'E TO A

I_)UCT MAC[I NUN.IP, Elt PUI,SE

].09



)

\
J

M = 3.t-
o

Altitude = Cruise

8O

60
Ct

,_,_!_---- 40

m<

2o

-Stability Augmentation System/

(SAS) on_Autop_lot _

/ Valve" opened on

- / right nacelle only
/ No pilot response

_._ J.. l l

c0

tl,
-1

-2

I I I

I

L__

.-

o
_e-4

m O

O O

O

N

Fi(3U R _2 84.

llO

0

-1

-2

-3

-4

1

0

0

1
.)

i 1 I

SAS Linit

1 1 I
-_ 6 8

Ti me, s

AIRCf<AI."/ ilESt_ObTStE 'fO I;_',,,YNIMI.;TI_I('A]_ OPE);r).G OF

SHOCt< SI'A1HI.]'ih" VAI,Vt,2S



.,...

- t

)-=(

)-=.I

F*

F*

©

rC

c_

©

o_, Poo_c quata/_



C2

o._

/

G
0

0

¢_,

(-3

G

C3

©

2_
_5



I

I I I
I

I i

I v

.,-a

0
,)

o

°_.-c

A 644 bl

0 I I_.
[] I ',88

0 z,<4o

•01;:i._ Stalic Friction

.010

• 003

I l 1 I i I

" 010 -- D_J(naT}lic Friction

"3

o

,0

0

o

.005

L 1 1 1

1.0 1.5 d.O .'_.

F!'<: !I-;E _').

S]" 1_1(_e Position, :n_

P_EA!i_b;c; V_'IC'."IO]< AT d').7,"i EIO_,_E 'TEATed"-

I

[13

........ u ............................



4_

¢0
°r,d

L_

_0
O

L)

O

:n
u

N

.03_ Static Friction

.02 ....................

.01 -

Tran_;verse Load = 2240N

I I I I I

.O3

.02
"4

O
O'

Q•._ 01
u

.PI

I Dynamic

Friction

1 1 1 1 1 I

0 0.5 1.0 1.5 2.0 2.5 3.0

Slide Position, cnl

FI(';t;BE 90. BEAIr_.]I',?G F]_ZCTIOi,: AT C,_0.t°t<

114

.... J ....... i - - -



..a_

!

o
0
L)

o
• r,,.I

o
6i",'l

.10

.O5

SL,[nfl),)1

Z_

<>
[1]

o

r_ ra _1:_;v _2 F 5 Q '[,()at']

564 ,"4

1128

1688

2240

-- Static Friction

"4

o
O

O

O

tU

. 10 _ D_m__ic Friction

.O5

0 I 1 1 1 1 I

0 0.5 1.0 1.5 2.0 2.5 3.0

Slide Po:sition, cm

FIGURE 9l. BEA!(Ib.G J"JIICTION A'J" ,'.9.1.°}( AI"]'I']J( I,F]AJj_..,' " """c"

1] '%



-....,
I

7--- -

]1_J

©

7

©

C,

........ - -- - , _ J .... i ,m ...............



M
m

M

_r
©

M
E_

.<

©
Z

.<

MM

mO

_9

©

• t

] ] r.



-<

P
Wall

.20 -

.15 -

4
J_

.I0 _

O

,7 .os _

q

0

FIGURE 94.

0

Ejector plus 24 Ejector plus 96
slide valves or 3/4 scale vortex

48 poppet valves va!ves - RD config.

p I. i--_ - ['---'----_'/ / Ejector

S

I t 1 t \., 1

• 10 .20 .30 .40 .50

p
T

Shock Trap Plenum Pressure Ratio, B

P

T O

EFFECT OF BI,EEI] VAI,VES 0_',[ S;[OC.K" ]'I<A}'/HJECTO?,

/VlA'L_C _;:_;(;

1 1 _



.25 -

PWall

.Z0

.15
O

.i0

5
,-'4

cn

.05

FFI;!;}IE 95.

0

Estimated Niax.

Shock q'rap Flow

I

.i0

Ejector plus Z4

slide valves or

•48 poppet valves.
I

-.-. / Ejcrcto'r-p!u_ 96

"" _._.. 3/4- scale vortex

• . ° /

a. : 1.0 I.i 1.6
P

W alis:1pe rcritical

I I I I

•20 .30 .40 .50

Shock Trap }_]enum Prcs_,ure Ratio,

P

_0

E]:'I_']']Ct ' Ol; .%T EED VA!."."lCS Of" NIA%'CII;]'<_I OF E,[I.AItC]EI)

• I t i _ % , • , [)S_{C)GI ¢[ '! :..AP Wi%'. E.]EC. ,O.<

] ],7

- " ...... " ..... ' .... " ......................................... I - /_ - I .... , ................ I



L I

M = 3+
0

Location Type

Cowl

Present

Shock

Trap

0

Increase in Valve

Flow _ mv/m °

Enlarged
Shock

Trap

Terminal

Shock

Standing

Ahead of

Bleed

•257

.214

•220

27¢/0 Step

In Ble_d
Plenum

Pres sure

Unshielded .173

Poppet

Shielded .135

Poppet

Slide .156

Vortex .011 .032

.Increase in Valve

Plus Ejector Flow

$.m v Anl
-m-6-o+ zJ

27% Seep
In Bleed

Plenum

Pressure

•2O5

• 167

Terminal

Shock

Stand i ng

Ahead of

.m_Blee d

•188

.043

Unshielded *

Poppet

Slide *

Vortex . • 005

Unshielded *

Poppet

_;lide *

Vortex .010

•293

•25O

•256

•068

.012

.012

.005

•O48

•048

.013

*Maximum attainable pressure increase is less than 27%.

FIGURE 96. COMPARISON OF BLEED FLOWS WITII VALVES FULI,Y OPEN
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