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SUMMARY

Skin temperatures, shearing forces, surface static pressures, and
boundary layer pitot pressures and total temperatures were measured on a hollow
cylinder 3.04 meters long and 0. 437 meter in diameter mounted beneath the

fuselage of the YF-12A airplane. The data were obtained at a nominal free stream
Mach number of 3.0 and at wall-to-recovery temperature ratios of 0.66 to 0.91.

The free stream Reynolds number had a nominal value of 4.2 X 106 per meter.
Heat transfer coefficients and skin friction coefficients were derived from skin

temperature time histories and shear force measurements, respectively. Also,
boundary layer velocity profiles were derived from pitot pressure measurements,
and a Reynolds analogy factor of 1.11 was obtained from the measured heat transfer
and skin friction data.

Skin friction, calculated by the theory of van Driest, by Eckert's reference
enthalpy method, and by the Spalding and Chi method, was compared with the
measured data. The skin friction coefficients predicted by the theory of
van Driest were in excellent agreement with the measurements. Theoretical heat
transfer coefficients, in the form of Stanton numbers calculated by using a modified
Reynolds analogy between skin friction and heat transfer, were compared with
measured values. The theory of van Driest, together with the experimentally

determined Reynolds analogy factor of 1.11, predicted heat transfer coefficients
that were in excellent agreement with the measured data. The measured velocity
profiles were compared to Coles' incompressible law-of-the-wall profile by trans-
forming the compressible measured data to their incompressible values. The trans-
formation methods of van Driest and Eckert both gave good correlation.

INTRODUCTION

Accurate calculations of turbulent skin friction and heat transfer are required
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for the efficient and safe design of high-speed aircraft. A large number of empirical
and semiempirical theories are available which can be used to predict skin friction
and heat transfer. However, values predicted by the various theories usually differ
substantially; therefore, experiments must be performed to determine the validity of
the theories. A large amount of experimental skin friction and heat transfer data has
been obtained in the wind tunnel (refs. 1 and 2). Unfortunately, the wind tunnel
tests have shown conflicting results (refs. 3 and 4). Data obtained from flight
have also differed from the wind tunnel results (refs. 5 and 6). This lack of agree-
ment in results obtained from the various experimental tests has hampered the
evaluation of turbulent boundary layer theories and clearly indicates the need for
further study.

The YF-12A airplane with its Mach 3 cruise capability offered an excellent test
bed for compressible turbulent boundary layer measurements. Consequently, an
instrumented hollow cylinder 3.04 meters in length was installed beneath the
fuselage of the YF-12A airplane to obtain flight-measured turbulent boundary layer
data that could be used to evaluate the various turbulent predicting methods. In
addition, the size of the hollow cylinder would allow the samecylinder with the
sameinstrumentation to be tested in the wind tunnel so that flight and wind tunnel
measurementscould be directly compared.

This paper presents flight data that were obtained on a hollow cylinder during
two YF-12 flights designated flights A and B. During flight A, skin friction and
boundary layer profile data were obtained at a local Mach number of 2.9, at a
wall-to-recovery temperature ratio of 0.91, and at a momentumthickness Reynolds
number of 8664. During flight B, heat transfer and skin friction data were obtained
at a local Mach number of 2.92, at wall-to-recovery temperatures of 0.66 to 0.71 and
at a local Reynolds number of 4.17 X 106per meter. The measured data are compared
to values calculated by various predicting methods. In addition, boundary layer
transition determined from measured temperatures and measured heat transfer are
presented.

SYMBOLS

Physical quantities in this report are given in the International System of
Units (SI).

cf

Fc

local skin friction coefficient

transformation funetion for skin friction, _--

f.?c transformation function for length Reynolds number,

Re x Ee L

Re or
x ReL
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altitude, m

local heat transfer coefficient based on enthalpy, kg/m2-sec

length of turbulent flow, m

Mach number

pressure, N/m 2

unit Reynolds number, _, m-1

Reynolds number based on length of turbulent boundary layer flow,

PsU8 L

_t8

Reynolds number based on distance from the leading edge,

PbU8 x

_8

PsU8 0
Reynolds number based on momentum thickness,

local Stanton number, hH

PsU8

Reynolds analogy factor

temperature, K

boundary layer recovery temperature, K

velocity, m/sec

friction velocity, _

distance from leading edge, m

distance normal to surface of cylinder, cm

angle of attack, deg

angle of sideslip, deg

totalboundary layer thickness, cm

_t8
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Subscripts:

t

M_

5

Superscripts:

(-)

boundary layer momentum thickness, cm

dynamic viscosity, N-sec/m 2

kinematic viscosity, m2/sec

density of air, kg/m 3

shearing stress, N/m 2

total conditions

wall or skin

boundary layer edge conditions

free stream

incompressible variable or a variable that has been transformed
to the equivalent constant property case

DESCRIPTION OF EQUIPMENT

A hollow cylinder, 3.04 meters in length and 0.437 meter in outside diameter,
was installed on the lower fuselage of the YF-12A airplane, as shown in figure 1.
The cylinder was attached to a pylon which was mounted to hard points on the air-
craft. The pylon provided a vertical separation distance of 0.46 meter between

the aircraft fuselage and the hollow cylinder. A photograph of the airplane with
the cylinder installed is shown in figure 2. The cylinder skin was 0. 127 centi-
meter thick and had a sharp leading edge with a radius of 0.0127 centimeter. A
complete description of the airplane can be found in reference 7.

INSTRUMENTATION

As shown in figure 3, the cylinder was instrumented with 123 thermocouples,
34 static pressure orifices, a skin friction balance, a pitot pressure rake, and a
total temperature boundary-layer rake. The thermocouples were 30-gage chromel-
alumel wires spot welded to the inside surface of the skin. The pressure orifices

were tubing with an inside diameter of 0.32 centimeter installed flush with the
outside surface of the skin. The skin friction gage was a commercially developed,
liquid-cooled force balance installed flush with the surface of the cylinder at the
location shown in figure 3. A detailed description of the skin friction gage is given
in reference 8. The pitot pressure rake and the total temperature rake were installed
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274.12 centimeters aft of the leading edge, and, as shown in figure 3, the pitot
pressure rake was installed on the lower surface centerline and the total temperature

rake was located on the lower surface at an angular displacement of 16.25 ° from the

vertical eenterline. The outermost probe on the pressure rake was a 20 ° half angle

conical probe used to measure flow angles needed to insure that the cylinder was
aligned with the local flow.

The primary boundary layer measurements were made on the lower centerline of

the cylinder. Data presented in this paper were obtained from these measurements.

The surface static pressure measurements and the skin temperature measurements

made at the other locations were used to detect any anomalies in the flow field on

the cylinder.

TEST CONDITIONS

In order to obtain meaningful boundary layer measurements, the hollow cylinder

had to be installed at a location on the YF-12A airplane where the local flow was

uniform. Consequently, before the aircraft installation was made, flow-field surveys

were conducted on a 1/25-scale model of the YF-12A airplane in the Langley Unitary

Plan Wind Tunnel (ref. 9) and on the YF-12A airplane in flight. These tests confirmed

that the local flow field below the airplane was uniform in the area where the cylinder

was to be located.

Two configurations of the cylinder were used in the experiment. The first con-

figuration, tested during flight A, is shown in figure 4. With this configuration the

wall or skin temperature is always at or near radiation equilibrium temperature and,

consequently, heat transfer data were not obtained during flight A. The second

configuration, tested during flight B, is shown in figure 5. In this configuration the

cylinder was insulated with a frangible cover which was used to provide low initial

wall temperatures. Prior to takeoff, to insure that the measurements were obtained

at cold surface temperatures, the cylinder was cooled to a temperature of 211 K using

gaseous nitrogen. When the airplane reached the desired test conditions, the
insulation was removed within 50 milliseconds and the test data were obtained.

Time histories of free stream Mach number, altitude, and angle of attack for

flights A and B are shown in figures 6 (a) and 6 (b), respectively. Also shown in

each figure is a typical skin-temperature time history. The shaded portion of these

flight profiles indicates the time during which the boundary layer data of this

experiment were obtained. Also shown in figure 6 (b) is the time at which the

insulation was removed. As can be seen, once the insulation was removed, the skin

temperature increased at a rapid rate. It was during this period of high heating

rates that the heat transfer and other boundary layer data were obtained. The

free stream conditions at which the data presented in this paper were obtained are

given in table 1. The local (cylinder) test conditions at which the data were

obtained are given in table 2.

It should be noted that the boundary layer edge static pressure given in table 2

was actually measured on the surface of the cylinder. The usual assumption was

made that the static pressure through the boundary layer was constant. Also, the

wall-to-recovery temperature ratio given in table 2 for flight A is based on the wall
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temperature measured on the lower centerline of the cylinder at the skin friction
balance location, and is slightly lower than the wall-to-recovery temperature ratios
on the cylinder forward of this location.

RESULTS AND DISCUSSION

Surface Static Pressures

The surface static pressures measured on the lower centerline of the cylinder
are shown in figure 7. Figure 7 (a) shows the data obtained during flight A, and
figure 7 (b) shows the data obtained during flight B. The solid lines in these
figures are straight line fairings of the data. The pressures were constant and

equal to 4943 N/m 2 for flight A and 4413 N/m 2 for flight B.

Boundary Layer Profiles

The Mach number and velocity profiles derived from the data measured during
flight A are tabulated in table 3. Also given in table 3 are the boundary layer
temperature distribution, the momentum thickness, and the pertinent boundary
layer edge conditions. As previously noted, boundary layer profiles were not
obtained during flight B.

Measured total temperature ratios obtained during flight A are plotted in figure 8
as a function of the velocity ratio squared. Also shown for comparison purposes

is the quadratic profile calculated by the method given in reference 3. The figure
shows that the measured data are in excellent agreement with the quadratic
distribution.

The boundary layer velocity distribution, calculated from the measured data
obtained during flight A, is presented in figure 9. Also shown is the velocity
profile predicted by the power law. When a power law exponent of 8 was used,
excellent agreement was obtained between the power law velocity profile and the
measured data.

Boundary Layer Thickness

A problem often encountered when trying to evaluate the various turbulent skin
friction and heat transfer theories is that of determining the virtual origin of
turbulent flow. Unless turbulent flow originates at or near the leading edge of the
test specimen, the determination of the virtual origin is somewhat arbitrary. This
problem can be eliminated if the comparisons of measured data with calculated data

are based on momentum thickness Reynolds number. Consequently, one of the
primary purposes of the boundary layer surveys was to determine the momentum
thickness. However, in order to evaluate the momentum thickness, the total thick-
ness must be determined. In the present investigation the total boundary layer

thickness was computed by the method developed in reference 10, which yielded a
thickness value of 3.05 centimeters.
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Law-of-the-Wall Velocity Profiles

The use of the Clauser technique to obtain skin friction from velocity profiles
is well known and is described in reference 11. However, when applying this
technique, especially to compressible turbulent boundary layers, there is the
inherent problem that the accuracy of the skin friction obtained by this procedure
depends on the accuracy of the compressible theory used to predict the law-of-
the-wall velocity profile. Therefore, before accurate skin friction can be obtained
from velocity profiles, the accuracy of the various theories must be determined.

Comparison of measured and calculated law-of-the-wall velocity profiles are
shown in figures 10 (a) to 10 (c). The solid curve in these figures represents
Coles' incompressible values as given in reference 12. The flight data in these
figures are the measured compressible boundary layer velocities that have been
reduced to their incompressible values by the indicated theory using the shearing
stress that was measured by the skin friction balance. In this form the data should
agree with the solid line if the theory used to transform the data is correct. The
three transformation methods used are the theory of van Driest (ref. 13) shown in
figure l0 (a), the reference enthalpy method of Eckert (ref. 14), shown in

figure 10(b), and the wall reference temperature method as applied in reference 15,
shown in figure 10(c). Both the theory of van Driest and Eckert's reference

enthalpy method yield good correlation between the measured profiles and Coles'

incompressible curve. However, as shown in figure 10 (c), the data transformed
by the wall reference temperature method are in poor agreement with the incom-

pressible curve.

SKIN FRICTION

Skin friction data were obtained directly from the skin friction balance measure-
ments during flights A and B and indirectly from heat transfer measurements
obtained during flight B. The measured skin friction data in the form of shearing
force, obtained during flight A, are shown in figure 11. Also shown for comparison
and evaluation are the values predicted by the theory of van Driest (ref. 16), the

Spalding and Chi method (ref. 17), and Eckert's reference enthalpy method
(ref. 14). Values predicted by the theory of van Driest and the method of

Spalding and Chi are in excellent agreement with the measured data. However,
E ckert's reference enthalpy method underpredicts the measured data by
approximately 10 percent.

Ori(Jin of turbulence.--All of the calculated values shown in figure 11 were
based on momentum thickness Reynolds number. However, because the momentum

thickness was not available for the test conditions of flightB, the virtual origin of
turbulent flow had to be determined in order to correlate and compare the measured

skin friction coefficientsobtained from both flightsA and B with theoretical predicted

values. The firststep in determining the virtual origin was to look at the boundary

layer transition. Ifthe transition data showed that turbulent flow existed at or near

the leading edge of the test specimen, then there was no need to determine a virtual

origin because, in this case, the virtual origin could be assumed to be the leading

edge.
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Figures 12 and 13 show boundary layer transition data obtained on the lower

centerline of the cylinder during flights A and B, respectively. In figure 12 the
transition data are shown in the form of measured wall temperature as a function of

distance from the leading edge. As shown, the beginning of transition occurs at a
distance of 0.76 meter and a Reynolds number of 3.4 million, and the end of

transition occurs at approximately i. 22 meters and a Reynolds number of 5.5 million.

It is obvious from this data that the leading edge is not the origin of turbulent flow

and a virtual origin must be determined. Fortunately, the momentum thickness

Reynolds number is known for flight A. Consequently, equivalent length Reynolds
numbers were determined for each theory that yielded the same results as obtained

when using the momentum thickness Reynolds number. The distance from the

leading edge determined from these equivalent Reynolds numbers was interpreted

as being the virtual origin for the particular theory used. The virtual origins
obtained by this procedure are shown in figure 12. Figure 13 shows transition data

obtained during flight B. The data are in the form of heat transfer coefficients as a

function of distance from the leading edge. Itis obvious from these data that transition

occurs so close to the leading edge that turbulent flow can be assumed to exist from

the leading edge.1 Consequently, for flight B the length of turbulent flow, L, and

the distance from the leading edge, x, are considered to be equal.

Evaluation of compressible transformation theories.--Comparison between

measured skin friction coefficients and values predicted by Eckert's reference

enthalpy method, the Spalding and Chi method, and the theory of van Driest are

shown in figures 14(a), 14(b), and 14(c), respectively. The solid line in these

figures represents the incompressible skin friction coefficients predicted by the

yon Kdrmdn-Schoenherr equation, and the symbols represent the measured data

that have been transformed to their incompressible values by the indicated

compressible theory. In this form the transformed measured data should agree

with the solid line if the theory used to transform the data is correct. The open

symbols in figure 14 represent skin friction coefficients that were obtained from

the measured heat transfer data using the experimentally determined Reynolds

analogy factor of 1.11. The procedure used to determine the experimental Reynolds

analogy factor is discussed in the following section of this report. The solid circle

symbol represents the skin friction coefficients obtained from the skin friction

balance measurements during flight B, and the solid square symbol represents

the skin friction balance data obtained during flight A. As can be seen, all three

theories do a good job of correlating the skin friction coefficients with Reynolds

number. However, the level of skin friction predicted by each transformation

theory differs substantially. As can be seen in figure 14 (a), the data transformed

by Eckert's reference enthalpy method are approximately I0 percent higher than

the yon K_rmdn-Schoenherr curve, and this is considered to be fair agreement.

Figure 14(b) shows that the measured data are about 7 percent higher than the

incompressible values when the Spalding and Chi method is used to transform

the data. The agreement shown in this figure is considered to be good. How-

ever, as shown in figure 14 (c), the measured data transformed by the theory

I
The factthat the boundary layer transitionoccurred much closertothe leading edge during flightB

than during flightA was not expected, since itisnormally assumed thatthe boundary layer becomes

more stableatthe lower wall temperatures. The reason for the early transitionduring flightB has not
been determined atthis time.
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of van Driest are within +2 percent of the von K_rm_n-Schoenherr incompressible

values and the agreement is considered to be excellent.

Reynolds Analogy Factor

Most turbulent heat transfer methods are based on some form of Reynolds analogy
between skin friction and heat transfer. Consequently, once a skin friction equation

is selected, a Reynolds analogy factor is needed to calculate heat transfer coeffi-
cients. The determination of a Reynolds analogy factor has been the subject of

considerable investigation but has still not been resolved (ref. 18). Therefore,
heat transfer and skin friction were measured simultaneously during this investi-

gation, and by using the relationship s = 2St/Cf, an experimental Reynolds analogy

factor was determined, thus eliminating the necessity of estimating a Reynolds

analogy factor when making the heat transfer calculation. The Reynolds analogy
factor determined from the measured skin friction and heat transfer was 1.11.

Heat Transfer

Figure 15 shows the comparison between the measured heat transfer coefficients,
in the form of Stanton numbers, and the theoretical values predicted by the theory

of van Driest using an experimental Reynolds analogy factor of 1.11. The dashed
line represents the laminar Stanton numbers predicted by Eckert's reference
enthalpy method. The values predicted by the theory of van Driest are represented

by two solid lines. The upper line represents the Stanton numbers that were
calculated using a wall-to-recovery temperature ratio of 0.66 and the lower line
represents values computed using a temperature ratio of 0.71. As shown, the
Stanton numbers predicted by the theory of van Driest are in excellent agreement
with the measured heat transfer data.

CONCLUSIONS

Flight-measured. turbulent skin friction, heat transfer, and boundary layer
velocity profiles were measured on the lower centerline of a hollow cylinder
3.04 meters in length at a nominal free stream Mach number of 3.0, at wall-to-
recovery temperature ratios of 0.66 to 0.91 and at local Reynolds numbers of
i to 12 million. Skin friction coefficients were obtained directly from measurements

made by a skin friction force balance and indirectly from heat transfer measurements
using a Reynolds analogy factor derived from the force balance and heat transfer
data. The results of this investigation led to the following conclusions:

1. The theory of van Driest predicted skin friction coefficients that were in

excellent (+2 percent) agreement with the measured data. The Spalding and Chi
method predicted skin friction coefficients that were 7 percent lower than the
measured coefficients, and the values predicted by Eekert's reference enthalpy
method were 10 percent lower than the measured skin friction coefficients.
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2. A measured Reynolds analogy factor of I. 11was derived from the skin friction
and heat transfer data.

3. Heat transfer coefficients predicted by the theory of van Driest, using the
measured Reynolds analogy factor, were in excellent agreement with the measured
heat transfer coefficients.

4. Measured velocity profiles transformed by the theory of van Driest and
Eckert's reference enthalpy method were in good agreement with Coles' incom-
pressible law-of-the-wall velocity profile.
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TABLE i.--FREE STREAM CONDITIONS

Flight

A

B

P=' T=, c_,wing,] [3,
M

N/m 2 K deg deg

3.02 4178 218 3.9

2.98 4092 217 3.8

Re /rn ,

per m

4.28 × 106

4.07 × 106

TABLE 2.--LOCAL (CYLINDER) CONDITIONS

Flight

A

B

M 6

2.90

2.92

T w / T R

0.91

0.66 to 0.77

P6 ' T 5 , c_,

N/m 2 K deg

4943 229 0 ± 0.05

4413 222 0 ± 0.05

deg

0 + 0.10

0 + 0.10

Res/m,
Re O

per m

4.49 X 106 8664

4.17 X 106 __ a

a

Boundary-layer velocity profiles were not obtained during flight B.

Consequently, the experimental momentum thickness Reynolds number
was not available for this flight; however, sufficient data were obtained

from the pitot pressure rake to determine the boundary-edge Mach number.
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T 5

TABLE 3.--BOUNDARY LAYER MACH NUMBER AND

VELOCITY DISTRIBUTIONS

Flight A

x = 274 cm; e = 0.193 cm; M 8 = 2.90;

= 229K; U8 = 880 m/sec; P8 = 4943N/m2; 8 = 3.05 cm

Y

cm

0.254

0.432

0.610

0. 787

0.965

1.321

1.956

2.591

3.226

3. 861

4.496

_Y_
8

0.083

0. 142

0.200

0.258

0.316

0.433

0.641

0. 849

1.058

1.266

1.474

M

0.566

0.617

0.66¢

0.700

0. 734

0.797

0.903

0. 979

1.000

i. 003

1.003

T

%

1.64

1.55

1.46

1.41

1.36

1.27

1.12

1.02

1.00

1.00

1.00

U

0.724

0.769

0.805

0.833

0.857

0.896

0.956

0.990

1.000

1.003

i.003
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= 12.70 '_3.1_

Figure 1.--YF-12A airplane showing location of hollow cylinder. Dimensions
in meters.

Figure 2 .--YF-12A airplane with hollow cylinder attached.
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Figure 4.--Hollow cylinder (flight A).
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Figure 5.--Hollow cylinder with insulating cover (flight B).
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Figure 7.--Surface static pressures measured on the lower cylinder

centerline.
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Figure 9.--Boundary layer velocity profile for flight A.
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Figure lO.--Law-of-the-wall velocity profiles for flight A.
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Figure ll.--Comparison of measured and calculated skin friction for flight A.

M 8 = 2.90, Re 0 = 8664, Tw/T R = 0.91.
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